We have performed a quantum chemistry study on the bonding patterns and interaction energies for 31 dimers of small organic functional groups (dubbed the SOFG-31 dataset), including the alkane–alkene–alkyne (6 + 4 + 4 = 14, AAA) groups, alcohol–aldehyde–ketone (4 + 4 + 3 = 11, AAK) groups, and carboxylic acid-amide (3 + 3 = 6, CAA) groups. The basis set superposition error corrected super-molecule approach using the second order Møller–Plesset perturbation theory (MP2) with the Dunning’s aug-cc-pVXZ (X = D, T, Q) basis sets has been employed in the geometry optimization and energy calculations. To calibrate the MP2 calculated interaction energies for these dimeric complexes, we perform single-point calculations with the coupled cluster with single, double, and perturbative triple excitations method at the complete basis set limit [CCSD(T)/CBS] using the well-tested extrapolation methods. In order to gain more physical insights, we also perform a parallel series of energy decomposition calculations based on the symmetry adapted perturbation theory (SAPT). The collection of these CCSD(T)/CBS interaction energy values can serve as a minimum quantum chemistry dataset for testing or training less accurate but more efficient calculation methods. As an application, we further propose a segmental SAPT model based on chemically recognizable segments in a specific functional group. These model interactions can be used to construct coarse-grained force fields for larger molecular systems.

1.
P.
Politzer
,
J. S.
Murray
, and
Z.
Peralta-Inga
, “
Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems
,”
Int. J. Quantum Chem.
85
,
676
684
(
2001
).
2.
C.
Morgado
,
M. A.
Vincent
,
I. H.
Hillier
, and
X.
Shan
, “
Can the DFT-D method describe the full range of noncovalent interactions found in large biomolecules?
,”
Phys. Chem. Chem. Phys.
9
,
448
451
(
2007
).
3.
P.
Ball
, “
Water as an active constituent in cell biology
,”
Chem. Rev.
108
,
74
108
(
2008
).
4.
D.
Leckband
and
J.
Israelachvili
, “
Intermolecular forces in biology
,”
Q. Rev. Biophys.
34
(
2
),
105
267
(
2001
).
5.
L. R.
Ferguson
and
W. A.
Denny
, “
Genotoxicity of non-covalent interactions: DNA, intercalators
,”
Mutat. Res., Fundam. Mol. Mech. Mutagen.
623
,
14
23
(
2007
).
6.
G.
Natile
and
L. G.
Marzilli
, “
Non-covalent interactions in adducts of platinum drugs with nucleobases innucleotides and DNA as revealed by using chiral substrates
,”
Coord. Chem. Rev.
250
,
1315
1331
(
2006
).
7.
J.
Gieseler
,
B.
Heber
, and
K.
Herbst
, “
An empirical modification of the force field approach to describe the modulation of galactic cosmic rays close to earth in a broad range of rigidities
,”
J. Geophys. Res.: Space Phys.
122
(
11
),
10964
10979
, (
2017
).
8.
R.
Ma
 et al, “
Determining influential descriptors for polymer chain conformation based on empirical force-fields and molecular dynamics simulations
,”
Chem. Phys. Lett.
704
,
49
54
(
2018
).
9.
S.
Santra
,
T.
Kundu
, and
M.
Jana
, “
Microscopic investigation on empirical force-field model dependent structure and dynamical properties of amino acids in aqueous medium
,”
J. Indian Chem. Soc.
95
(
12
),
1617
1630
(
2018
).
10.
M.
Stroet
 et al, “
Optimization of empirical force fields by parameter space mapping: A single-step perturbation approach
,”
J. Chem. Theory Comput.
13
(
12
),
6201
6212
(
2017
).
11.
D.
van der Spoel
,
M. M.
Ghahremanpour
, and
J. A.
Lemkul
, “
Small molecule thermochemistry: A tool for empirical force field development
,”
J. Phys. Chem. A
122
(
45
),
8982
8988
(
2018
).
12.
A.
Philips
 et al, “
Quadrupolar N-14 NMR relaxation from force-field and ab initio molecular dynamics in different solvents
,”
J. Chem. Theory Comput.
15
(
1
),
509
519
(
2019
).
13.
P.
Xu
 et al, “
Perspective: Ab initio force field methods derived from quantum mechanics
,”
J. Chem. Phys.
148
(
9
),
090901
(
2018
).
14.
Y.-H.
Chung
,
A. H.-T.
Li
, and
S. D.
Chao
, “
Computer simulation of trifluoromethane properties with ab initio force field
,”
J. Comput. Chem.
32
(
11
),
2414
2421
(
2011
).
15.
U. A.
Higgoda
 et al, “
Self-diffusion coefficient and viscosity of methane and carbon dioxide via molecular dynamics simulations based on new ab initio-derived force fields
,”
Fluid Phase Equilib.
481
,
15
27
(
2019
).
16.
A. H. T.
Li
,
S. D.
Chao
, and
C. C.
Chang
, “
Determination of a silane intermolecular force field potential model from an ab initio calculation
,”
Phys. Rev. A
82
(
6
),
062520
(
2010
).
17.
A. H. T.
Li
,
S. C.
Huang
, and
S. D.
Chao
, “
Molecular dynamics simulation of liquid carbon tetrachloride using ab initio force field
,”
J. Chem. Phys.
132
(
2
),
024506
(
2010
).
18.
L.
Pereyaslavets
 et al, “
On the importance of accounting for nuclear quantum effects in ab initio calibrated force fields in biological simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
115
(
39
),
E9258
(
2018
).
19.
S.
Perez-Conesa
 et al, “
A general study of actinyl hydration by molecular dynamics simulations using ab initio force fields
,”
J. Chem. Phys.
150
(
10
),
104504
(
2019
).
20.
S.-B.
Wang
,
A. H.-T.
Li
, and
S. D.
Chao
, “
Liquid properties of dimethyl ether from molecular dynamics simulations using ab initio force fields
,”
J. Comput. Chem.
33
(
9
),
998
1003
(
2012
).
21.
J.
Rezac
 et al, “
Benchmark calculations of three-body intermolecular interactions and the performance of low-cost electronic structure methods
,”
J. Chem. Theory Comput.
11
(
7
),
3065
3079
(
2015
).
22.
J. G.
McDaniel
,
E.
Choi
,
C. Y.
Son
,
J. R.
Schmidt
, and
A.
Yethiraj
, “
Ab initio force fields for imidazolium-based ionic liquids
,”
J. Phys. Chem. B
120
,
7024
7036
(
2016
).
23.
J. A.
Rackers
,
C.
Liu
,
P.
Ren
, and
J. W.
Ponder
, “
A physically grounded damped dispersion model with particle mesh Ewald summation
,”
J. Chem. Phys.
149
,
084115
(
2018
).
24.
H.
Gökcan
,
E.
Kratz
,
T. A.
Darden
,
J.-P.
Piquemal
, and
G. A.
Cisneros
, “
QM/MM simulations with the Gaussian electrostatic model: A density-based polarizable potential
,”
J. Phys. Chem. Lett.
9
,
3062
3067
(
2018
).
25.
M.
Kodrycka
and
K.
Patkowski
, “
Platinum, gold, and silver standards of intermolecular interaction energy calculations
,”
J. Chem. Phys.
151
,
070901
(
2019
).
26.
S. T.
Schneebeli
,
A. D.
Bochevarov
, and
R. A.
Friesner
, “
Parameterization of a B3LYP specific correction for noncovalent interactions and basis set superposition error on a gigantic data set of CCSD(T) quality noncovalent interaction energies
,”
J. Chem. Theory Comput.
7
,
658
668
(
2011
).
27.
N.
Mardirossian
and
M.
Head-Gordon
, “
ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation
,”
J. Chem. Phys.
144
,
214110
(
2016
).
28.
D. G. A.
Smith
,
L. A.
Burns
,
K.
Patkowski
, and
C. D.
Sherrill
, “
Revised damping parameters for the D3 dispersion correction to density functional theory
,”
J. Phys. Chem. Lett.
7
,
2197
2203
(
2016
).
29.
L. A.
Burns
,
J. C.
Faver
,
Z.
Zheng
,
M. S.
Marshall
,
D. G. A.
Smith
,
K.
Vanommeslaeghe
,
A. D.
MacKerell
, Jr.
,
K. M.
Merz
, Jr.
, and
C. D.
Sherrill
, “
The BioFragment Database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions
,”
J. Chem. Phys.
147
,
161727
(
2017
).
30.
R. T.
McGibbon
,
A. G.
Taube
,
A. G.
Donchev
,
K.
Siva
,
F.
Hernández
,
C.
Hargus
,
K.-H.
Law
,
J. L.
Klepeis
, and
D. E.
Shaw
, “
Improving the accuracy of Møller-Plesset perturbation theory with neural networks
,”
J. Chem. Phys.
147
,
161725
(
2017
).
31.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
, “
A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions
,”
Phys. Chem. Chem. Phys.
19
,
32184
32215
(
2017
).
32.
J.
Řezáč
, “
Non-covalent interactions atlas benchmark data sets: Hydrogen bonding
,”
J. Chem. Theory Comput.
16
,
2355
2368
(
2020
).
33.
S. F.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
(
4
),
553
566
(
1970
).
34.
F. B.
van Duijneveldt
,
J. G. C. M.
van Duijneveldt-van de Rijdt
, and
J. H.
van Lenthe
, “
State of the art in counterpoise theory
,”
Chem. Rev.
94
(
7
),
1873
1885
(
1994
).
35.
N.
Gresh
, “
Energetics of Zn2+ binding to a series of biologically relevant ligands: A molecular mechanics investigation grounded on ab initio self-consistent-field supermolecular computations
,”
J. Comput. Chem.
16
(
7
),
856
882
(
1995
).
36.
N.
Gresh
,
M.
Leboeuf
, and
D.
Salahub
, “
Energetics and structure in model neutral, anionic and cationic hydrogen-bonded complexes—Combined ab initio SCF MP2 supermolecular, density-functional, and molecular mechanics
,”
Model. Hydrogen Bond
569
,
82
112
(
1994
).
37.
J.
Kona
 et al, “
Role of solvent effects on nucleophilic substitution of 4H-pyran-4-one and its 2,6-dimethyl derivative with hydroxide ion in aqueous solution: Ab initio and density functional theory studies on a supermolecular reaction model
,”
J. Mol. Struct.: THEOCHEM
728
(
1-3
),
117
122
(
2005
).
38.
L. A.
Burns
,
M. S.
Marshall
, and
C. D.
Sherrill
, “
Comparing counterpoise-corrected, uncorrected, and averaged binding energies for benchmarking noncovalent interactions
,”
J. Chem. Theory Comput.
10
,
49
57
(
2014
).
39.
M. S.
Marshall
,
L. A.
Burns
, and
C. D.
Sherrill
, “
Basis set convergence of the coupled-cluster correction, δ-CCSD(T)-MP2: Best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases
,”
J. Chem. Phys.
135
,
194102
(
2011
).
40.
J.
Granatier
,
M.
Pitoňák
, and
P.
Hobza
, “
Accuracy of several wave function and density functional theory methods for description of noncovalent interaction of saturated and unsaturated hydrocarbon dimers
,”
J. Chem. Theory Comput.
8
,
2282
2292
(
2012
).
41.
L.
Gráfová
,
M.
Pitovnák
,
J.
Řezáč
, and
P.
Hobza
, “
Comparative study of selected wave function and density functional methods for noncovalent interaction energy calculations using the extended S22 data set
,”
J. Chem. Theory Comput.
6
,
2365
2376
(
2010
).
42.
T.
Takatani
,
E. G.
Hohenstein
,
M.
Malagoli
,
M. S.
Marshall
, and
C. D.
Sherrill
, “
Basis set consistent revision of the S22 test set of noncovalent interaction energies
,”
J. Chem. Phys.
132
(
14
),
144104
(
2010
).
43.
P.
Hobza
, “
The calculation of intermolecular interaction energies
,”
Annu. Rep. Prog. Chem., Sect. C
107
,
148
168
(
2011
).
44.
J.
Řezáč
and
P.
Hobza
, “
Describing noncovalent interactions beyond the common approximations: How accurate is the ‘gold standard,’ CCSD(T) at the complete basis set limit?
,”
J. Chem. Theory Comput.
9
,
2151
2155
(
2013
).
45.
O.
Marchetti
and
H.-J.
Werner
, “
Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method
,”
J. Phys. Chem. A
113
(
43
),
11580
11585
(
2009
).
46.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
(
2
),
1007
1023
(
1989
).
47.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
, “
Quadratic configuration interaction. A general technique for determining electron correlation energies
,”
J. Chem. Phys.
87
(
10
),
5968
5975
(
1987
).
48.
T.
Helgaker
 et al, “
Basis-set convergence of correlated calculations on water
,”
J. Chem. Phys.
106
(
23
),
9639
9646
(
1997
).
49.
M.
Frisch
 et al, Gaussian 09, revision D,
Gaussian, Inc.
,
Wallingford, CT
,
2009
, Vol. 01.
50.
P.
Jurečka
and
P.
Hobza
, “
On the convergence of the (ΔECCSD(T)–ΔEMP2) term for complexes with multiple H-bonds
,”
Chem. Phys. Lett.
365
,
89
94
(
2002
).
51.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
, “
S66: A well-balanced database of benchmark interaction energies relevant to biomolecular structures
,”
J. Chem. Theory Comput.
7
(
8
),
2427
2438
(
2011
).
52.
E. G.
Hohenstein
and
C. D.
Sherrill
, “
Wavefunction methods for noncovalent interactions
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
(
2
),
304
326
(
2012
).
53.
L.
Goerigk
and
S.
Grimme
, “
A general database for main group thermochemistry, kinetics, and noncovalent interactions—Assessment of common and reparameterized (meta-)GGA density functionals
,”
J. Chem. Theory Comput.
6
(
1
),
107
126
(
2010
).
54.
B.
Jeziorski
,
R.
Moszynski
, and
K.
Szalewicz
, “
Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes
,”
Chem. Rev.
94
(
7
),
1887
1930
(
1994
).
55.
J. M.
Turney
 et al, “
Psi4: An open-source ab initio electronic structure program
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
(
4
),
556
565
(
2012
).
56.
A. H.-T.
Li
and
S. D.
Chao
, “
A refined intermolecular interaction potential for methane: Spectral analysis and molecular dynamics simulations
,”
J. Chin. Chem. Soc.
63
,
282
289
(
2016
).
57.
S.-W.
Chao
,
A. H.-T.
Li
, and
S. D.
Chao
, “
Molecular dynamics simulations of fluid methane properties using ab initio intermolecular interaction potentials
,”
J. Comput. Chem.
30
,
1839
1849
(
2009
).
58.
A. H.-T.
Li
and
S. D.
Chao
, “
Interaction energies of dispersion-bound methane dimer from coupled cluster method at complete basis set limit
,”
J. Mol. Struct.: THEOCHEM
897
,
90
94
(
2009
).
59.
A. H.-T.
Li
and
S. D.
Chao
, “
Intermolecular potentials of the methane dimer calculated with Moller–Plesset perturbation theory and density functional theory
,”
J. Chem. Phys.
125
,
094312
(
2006
).
60.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
, and
M.
Mikami
, “
Estimated MP2 and CCSD(T) interaction energies of n-alkane dimers at the basis set limit: Comparison of the methods of Helgaker et al. and Feller
,”
J. Chem. Phys.
124
(
11
),
114304
(
2006
).
61.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
, and
M.
Mikami
, “
Magnitude of interaction between n-alkane chains and its anisotropy: High-level ab initio calculations of n-butane, n-pentane, and n-hexane dimers
,”
J. Phys. Chem. A
108
(
46
),
10311
10316
(
2004
).
62.
J.
Echeverría
,
G.
Aullón
,
D.
Danovich
,
S.
Shaik
, and
S.
Alvarez
, “
Dihydrogen contacts in alkanes are subtle but not faint
,”
Nat. Chem.
3
,
323
330
(
2011
).
63.
A. A.
Fokin
,
D.
Gerbig
, and
P. R.
Scheiner
, “
σ/σ- and π/π-interactions are equally important: Multilayered graphanes
,”
J. Am. Chem. Soc.
133
,
20036
20039
(
2011
).
64.
D.
Danovich
,
S.
Shiak
,
F.
Neese
,
J.
Echeverria
,
G.
Aullon
, and
S.
Alvarez
, “
Understanding the nature of the CH⋯HC interactions in alkanes
,”
J. Chem. Theory Comput.
9
,
1977
1991
(
2013
).
65.
Z.-Y.
Zeng
,
Y.-S.
Wang
, and
S. D.
Chao
, “
Hydrogen bonded dimers of small alkyl substituted amides: Structures, energetics, and spectral analyses based on density functional theory calculations
,”
Comput. Theor. Chem.
1113
,
1
7
(
2017
).
66.
T. M.
Parker
,
L. A.
Burns
,
R. M.
Parrish
,
A. G.
Ryno
, and
C.
David Sherrill
, “
Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies
,”
J. Chem. Phys.
140
,
094106
(
2014
).
67.
A. J.
Stone
,
The Theory of Intermolecular Forces
(
Oxford University Press
,
Oxford
,
2013
).
68.
L. H.
Sperling
,
Introduction to Physical Polymer Sciences
(
Wiley
,
New York
,
2001
).
69.
R. M.
Parrish
,
T. M.
Parker
, and
C. D.
Sherrill
, “
Chemical assignment of symmetry-adapted perturbation theory interaction energy components: The functional-group SAPT partition
,”
J. Chem. Theory Comput.
10
,
4417
(
2014
).
70.
R. M.
Parrish
and
C. D.
Sherrill
, “
Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition
,”
J. Chem. Phys.
141
,
044115
(
2014
).
71.
R. M.
Parrish
,
J. F.
Gonthier
,
C.
Corminbœuf
, and
C. D.
Sherrill
, “
Communication: Practical intramolecular symmetry adapted perturbation theory via Hartree–Fock embedding
,”
J. Chem. Phys.
143
,
051103
(
2015
).
72.
R. M.
Parrish
and
C. D.
Sherrill
, “
Quantum-mechanical evaluation of π–π versus substituent–π interactions in π stacking: Direct evidence for the wheeler–houk picture
,”
J. Am. Chem. Soc.
136
,
17386
(
2014
).
73.
R.
Sedlak
,
T.
Janowski
,
M.
Pitoňák
,
J.
Řezáč
,
P.
Pulay
, and
P.
Hobza
, “
Accuracy of quantum chemical methods for large noncovalent complexes
,”
J. Chem. Theory Comput.
9
(
8
),
3364
3374
(
2013
).
74.
R.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Oxford University Press
,
Oxford
,
1994
).
75.
J. H.
Jensen
and
M. S.
Gordon
, “
An approximate formula for the intermolecular Pauli repulsion between closed shell molecules. II. Application to the effective fragment potential method
,”
J. Chem. Phys.
108
,
4772
4782
(
1998
).
76.
M. S.
Gordon
,
M. A.
Freitag
,
P.
Bandyopadhyay
,
J. H.
Jensen
,
V.
Kairys
, and
W. J.
Stevens
, “
The effective fragment potential method: A QM-based MM approach to modeling environmental effects in chemistry
,”
J. Phys. Chem. A
105
,
293
307
(
2001
).
77.
S. F.
Chiu
and
S. D.
Chao
, “
Coarse-grained simulations using a multipolar force field model
,”
Materials
11
,
1328
(
2018
).
78.
S. D.
Chao
,
J. D.
Kress
, and
A.
Redondo
, “
Coarse-grained rigid blob model for soft matter simulations
,”
J. Chem. Phys.
122
,
234912
(
2005
).
79.
The First International Conference on Noncovalent Interactions (ICNI) was held in Lisbon in 2019 (September 2–6). See https://icni2019.eventos.chemistry.pt/ for more information.

Supplementary Material

You do not currently have access to this content.