In this paper, we present a quantum stochastic model for spectroscopic lineshapes in the presence of a co-evolving and non-stationary background population of excitations. Starting from a field theory description for interacting bosonic excitons, we derive a reduced model whereby optical excitons are coupled to an incoherent background via scattering as mediated by their screened Coulomb coupling. The Heisenberg equations of motion for the optical excitons are then driven by an auxiliary stochastic population variable, which we take to be the solution of an Ornstein–Uhlenbeck process. Itô’s lemma then allows us to easily construct and evaluate correlation functions and response functions. Focusing on the linear response, we compare our model to the classic Anderson–Kubo model. While similar in motivation, there are differences in the predicted lineshapes, notably in terms of asymmetry, and variation with the increasing background population.

1.
P. W.
Anderson
, “
A mathematical model for the narrowing of spectral lines by exchange or motion
,”
J. Phys. Soc. Jpn.
9
,
316
339
(
1954
).
2.
R.
Kubo
, “
Note on the stochastic theory of resonance absorption
,”
J. Phys. Soc. Jpn.
9
,
935
944
(
1954
).
3.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
2011
).
4.
M.
Lindberg
,
Y. Z.
Hu
,
R.
Binder
, and
S. W.
Koch
, “
Many-body effects in a χ(3) analysis of optically excited semiconductors
,” in
Proceedings of the International Quantum Electronics Conference (IQEC’94)
,
1994
.
5.
I. E.
Perakis
, “
Many-body effects in nonlinear spectroscopy: A time-dependent transformation approach
,”
Chem. Phys.
210
,
259
277
(
1996
).
6.
Y. Z.
Hu
,
R.
Binder
,
S. W.
Koch
,
S. T.
Cundiff
,
H.
Wang
, and
D. G.
Steel
, “
Excitation and polarization effects in semiconductor four-wave-mixing spectroscopy
,”
Phys. Rev. B
49
,
14382
(
1994
).
7.
H. C.
Schneider
,
W. W.
Chow
, and
S. W.
Koch
, “
Excitation-induced dephasing in semiconductor quantum dots
,”
Phys. Rev. B
70
,
235308
(
2004
).
8.
L. A.
Dunbar
,
R. P.
Stanley
,
M.
Lynch
,
J.
Hegarty
,
U.
Oesterle
,
R.
Houdré
, and
M.
Ilegems
, “
Excitation-induced coherence in a semiconductor microcavity
,”
Phys. Rev. B
66
,
195307
(
2002
).
9.
R. A.
Kaindl
,
K.
Reimann
,
M.
Woerner
,
T.
Elsaesser
,
R.
Hey
, and
K. H.
Ploog
, “
Ultrafast excitation-induced dephasing of homogeneously broadened intersubband resonances
,” in Technical Digest—Summaries of Papers Presented at
the Quantum Electronics and Laser Science Conference, QELS 2001
,
2001
.
10.
M. E.
Siemens
,
G.
Moody
,
H.
Li
,
A. D.
Bristow
, and
S. T.
Cundiff
, “
Resonance lineshapes in two-dimensional Fourier transform spectroscopy
,”
Opt. Express
18
,
17699
17708
(
2010
).
11.
L.
Schultheis
,
J.
Kuhl
,
A.
Honold
, and
C. W.
Tu
, “
Ultrafast phase relaxation of excitons via exciton-exciton and exciton-electron collisions
,”
Phys. Rev. Lett.
57
,
1635
1638
(
1986
).
12.
F.
Katsch
,
M.
Selig
, and
A.
Knorr
, “
Exciton-scattering-induced dephasing in two-dimensional semiconductors
,”
Phys. Rev. Lett.
124
,
257402
(
2020
).
13.
Y.
Kato
,
D.
Ichii
,
K.
Ohashi
,
H.
Kunugita
,
K.
Ema
,
K.
Tanaka
,
T.
Takahashi
, and
T.
Kondo
, “
Extremely large binding energy of biexcitons in an organic-inorganic quantum-well material (C4H9NH3)2PbBr4
,”
Solid State Commun.
128
,
15
18
(
2003
).
14.
F.
Thouin
,
S.
Neutzner
,
D.
Cortecchia
,
V. A.
Dragomir
,
C.
Soci
,
T.
Salim
,
Y. M.
Lam
,
R.
Leonelli
,
A.
Petrozza
,
A. R.
Srimath Kandada
, and
C.
Silva
, “
Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder
,”
Phys. Rev. Mater.
2
,
034001
(
2018
); arXiv:1712.04733.
15.
F.
Thouin
,
D.
Cortecchia
,
A.
Petrozza
,
A. R.
Srimath Kandada
, and
C.
Silva
, “
Enhanced screening and spectral diversity in many-body elastic scattering of excitons in two-dimensional hybrid metal-halide perovskites
,”
Phys. Rev. Res.
1
,
032032
(
2019
).
16.
S.
Neutzner
,
F.
Thouin
,
D.
Cortecchia
,
A.
Petrozza
,
C.
Silva
, and
A. R.
Srimath Kandada
, “
Exciton-polaron spectral structures in two dimensional hybrid lead-halide perovskites
,”
Phys. Rev. Mater.
2
,
064605
(
2018
); arXiv:1803.02455.
17.
F.
Thouin
,
D. A.
Valverde-Chávez
,
C.
Quarti
,
D.
Cortecchia
,
I.
Bargigia
,
D.
Beljonne
,
A.
Petrozza
,
C.
Silva
, and
A. R.
Srimath Kandada
, “
Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites
,”
Nat. Mater.
18
,
349
356
(
2019
).
18.
F.
Thouin
,
A. R.
Srimath Kandada
,
D. A.
Valverde-Chávez
,
D.
Cortecchia
,
I.
Bargigia
,
A.
Petrozza
,
X.
Yang
,
E. R.
Bittner
, and
C.
Silva
, “
Electron-phonon couplings inherent in polarons drive exciton dynamics in two-dimensional metal-halide perovskites
,”
Chem. Mater.
31
,
7085
7091
(
2019
).
19.
A. R.
Srimath Kandada
and
C.
Silva
, “
Exciton polarons in two-dimensional hybrid metal-halide perovskites
,”
J. Phys. Chem. Lett.
11
,
3173
3184
(
2020
).
20.
A. R. S.
Kandada
,
H.
Li
,
F.
Thouin
,
E. R.
Bittner
, and
C.
Silva
, “
Stochastic scattering theory for excitation induced dephasing: Time-dependent nonlinear coherent exciton lineshapes
,” arXiv:2008.08211 [physics.chem-ph] (
2020
).
21.
G. E.
Uhlenbeck
and
L. S.
Ornstein
,
Phys. Rev.
36
,
823
841
(
1930
).
22.
R. F.
Fox
, “
Stochastic calculus in physics
,”
J. Stat. Phys.
46
,
1145
1157
(
1987
).
23.
H.
von Weizsäcker
and
G.
Winkler
, “
Ito-Calculus
,” in , Advanced Lectures in Mathematics (
Vieweg+Teubner Verlag
,
Wiesbaden
,
1990
).
24.
J. M.
Steele
,
Stochastic Calculus and Financial Applications
(
Springer
,
2001
).
25.
K.
Itô
, “
Stochastic integral
,”
Proc. Imp. Acad.
20
,
519
524
(
1944
).
26.
P.
Biane
, “
Itô’s stochastic calculus and heisenberg commutation rules
,”
Stochastic Process. Appl.
120
,
698
720
(
2010
).
27.
S.
Mukamel
,
Principles of Nonlinear Optics and Spectroscopy
(
Oxford University Press
,
1995
).
You do not currently have access to this content.