Peptides mediate up to 40% of known protein–protein interactions in higher eukaryotes and play an important role in cellular signaling. However, it is challenging to simulate both binding and unbinding of peptides and calculate peptide binding free energies through conventional molecular dynamics, due to long biological timescales and extremely high flexibility of the peptides. Based on the Gaussian accelerated molecular dynamics (GaMD) enhanced sampling technique, we have developed a new computational method “Pep-GaMD,” which selectively boosts essential potential energy of the peptide in order to effectively model its high flexibility. In addition, another boost potential is applied to the remaining potential energy of the entire system in a dual-boost algorithm. Pep-GaMD has been demonstrated on binding of three model peptides to the SH3 domains. Independent 1 µs dual-boost Pep-GaMD simulations have captured repetitive peptide dissociation and binding events, which enable us to calculate peptide binding thermodynamics and kinetics. The calculated binding free energies and kinetic rate constants agreed very well with available experimental data. Furthermore, the all-atom Pep-GaMD simulations have provided important insights into the mechanism of peptide binding to proteins that involves long-range electrostatic interactions and mainly conformational selection. In summary, Pep-GaMD provides a highly efficient, easy-to-use approach for unconstrained enhanced sampling and calculations of peptide binding free energies and kinetics.

1.
E.
Petsalaki
and
R. B.
Russell
,
Curr. Opin. Biotechnol.
19
,
344
(
2008
).
2.
A. A.
Das
,
O. P.
Sharma
,
M. S.
Kumar
,
R.
Krishna
, and
P. P.
Mathur
,
Genomics Proteomics Bioinf.
11
,
241
(
2013
).
3.
P. M.
Watt
,
Nat. Biotechnol.
24
,
177
(
2006
).
4.
L. T.
Vassilev
,
B. T.
Vu
,
B.
Graves
,
D.
Carvajal
,
F.
Podlaski
,
Z.
Filipovic
,
N.
Kong
,
U.
Kammlott
,
C.
Lukacs
,
C.
Klein
,
N.
Fotouhi
, and
E. A.
Liu
,
Science
303
,
844
(
2004
).
5.
T.
Matthews
,
M.
Salgo
,
M.
Greenberg
,
J.
Chung
,
R.
DeMasi
, and
D.
Bolognesi
,
Nat. Rev. Drug Discovery
3
,
215
(
2004
).
6.
V. M.
Ahrens
,
K.
Bellmann-Sickert
, and
A. G.
Beck-Sickinger
,
Future Med. Chem.
4
,
1567
(
2012
).
7.
K.
Fosgerau
and
T.
Hoffmann
,
Drug Discovery Today
20
,
122
(
2015
).
8.
U.
Kahler
,
J. E.
Fuchs
,
P.
Goettig
, and
K. R.
Liedl
,
J. Biomol. Struct. Dyn.
36
,
4072
(
2018
).
9.
A. C.
Lee
,
J. L.
Harris
,
K. K.
Khanna
, and
J.-H.
Hong
,
Int. J. Mol. Sci.
20
,
2383
(
2019
).
10.
D.
Kilburg
and
E.
Gallicchio
,
Adv. Protein Chem. Struct. Biol.
105
,
27
(
2016
).
11.
M.
Ciemny
,
M.
Kurcinski
,
K.
Kamel
,
A.
Kolinski
,
N.
Alam
,
O.
Schueler-Furman
, and
S.
Kmiecik
,
Drug Discovery Today
23
,
1530
(
2018
).
12.
G.
Weng
,
J.
Gao
,
Z.
Wang
,
E.
Wang
,
X.
Hu
,
X.
Yao
,
D.
Cao
, and
T.
Hou
,
J. Chem. Theory Comput.
16
,
3959
(
2020
).
13.
M.
Karplus
and
J. A.
McCammon
,
Nat. Struct. Biol.
9
,
646
(
2002
).
15.
S. J.
de Vries
,
J.
Rey
,
C. E. M.
Schindler
,
M.
Zacharias
, and
P.
Tuffery
,
Nucleic Acids Res.
45
,
W361
(
2017
).
16.
C. E. M.
Schindler
,
S. J.
de Vries
, and
M.
Zacharias
,
Structure
23
,
1507
(
2015
).
17.
A.
Ben-Shimon
and
M. Y.
Niv
,
Structure
23
,
929
(
2015
).
18.
J.
Wang
,
A.
Alekseenko
,
D.
Kozakov
, and
Y.
Miao
,
Front. Mol. Biosci.
6
,
112
(
2019
).
19.
M.
Ahmad
,
W.
Gu
, and
V.
Helms
,
Angew. Chem., Int. Ed.
47
,
7626
(
2008
).
20.
B.
Knapp
,
S.
Demharter
,
R.
Esmaielbeiki
, and
C. M.
Deane
,
Briefings Bioinf.
16
,
1035
(
2015
).
21.
S.
Wan
,
B.
Knapp
,
D. W.
Wright
,
C. M.
Deane
, and
P. V.
Coveney
,
J. Chem. Theory Comput.
11
,
3346
(
2015
).
22.
J.
Chen
,
J.
Wang
,
Q.
Zhang
,
K.
Chen
, and
W.
Zhu
,
Sci. Rep.
5
,
17421
(
2015
).
23.
M. C.
Zwier
,
A. J.
Pratt
,
J. L.
Adelman
,
J. W.
Kaus
,
D. M.
Zuckerman
, and
L. T.
Chong
,
J. Phys. Chem. Lett.
7
,
3440
(
2016
).
24.
V.
Salmaso
,
M.
Sturlese
,
A.
Cuzzolin
, and
S.
Moro
,
Structure
25
,
655
(
2017
).
25.
S.
Yadahalli
,
J.
Li
,
D. P.
Lane
,
S.
Gosavi
, and
C. S.
Verma
,
Sci. Rep.
7
,
15600
(
2017
).
26.
P.
Robustelli
,
S.
Piana
, and
D. E.
Shaw
,
J. Am. Chem. Soc.
142
,
11092
(
2020
).
27.
J.-P.
Demers
and
A.
Mittermaier
,
J. Am. Chem. Soc.
131
,
4355
(
2009
).
28.
Y.
Xue
,
T.
Yuwen
,
F.
Zhu
, and
N. R.
Skrynnikov
,
Biochemistry
53
,
6473
(
2014
).
29.
O.
Schon
,
A.
Friedler
,
M.
Bycroft
,
S. M. V.
Freund
, and
A. R.
Fersht
,
J. Mol. Biol.
323
,
491
(
2002
).
30.
S.
Gianni
,
S. R.
Haq
,
L. C.
Montemiglio
,
M. C.
Jürgens
,
Å.
Engström
,
C. N.
Chi
,
M.
Brunori
, and
P.
Jemth
,
J. Biol. Chem.
286
,
27167
(
2011
).
31.
J.
Zhang
,
P. J.
Sapienza
,
H.
Ke
,
A.
Chang
,
S. R.
Hengel
,
H.
Wang
,
G. N.
Phillips
, and
A. L.
Lee
,
Biochemistry
49
,
9280
(
2010
).
32.
M. A.
Cuendet
,
V.
Zoete
, and
O.
Michielin
,
Proteins
79
,
3007
(
2011
).
33.
J. A.
Morrone
,
A.
Perez
,
J.
MacCallum
, and
K. A.
Dill
,
J. Chem. Theory Comput.
13
,
870
(
2017
).
34.
J. A.
Morrone
,
A.
Perez
,
Q.
Deng
,
S. N.
Ha
,
M. K.
Holloway
,
T. K.
Sawyer
,
B. S.
Sherborne
,
F. K.
Brown
, and
K. A.
Dill
,
J. Chem. Theory Comput.
13
,
863
(
2017
).
35.
G.
Lamothe
and
T. E.
Malliavin
,
BMC Struct. Biol.
18
,
4
(
2018
).
36.
F.
Paul
,
C.
Wehmeyer
,
E. T.
Abualrous
,
H.
Wu
,
M. D.
Crabtree
,
J.
Schöneberg
,
J.
Clarke
,
C.
Freund
,
T. R.
Weikl
, and
F.
Noé
,
Nat. Commun.
8
,
1095
(
2017
).
37.
R.
Zou
,
Y.
Zhou
,
Y.
Wang
,
G.
Kuang
,
H.
Ågren
,
J.
Wu
, and
Y.
Tu
,
J. Chem. Inf. Model.
60
,
1551
(
2020
).
38.
C.
Abrams
and
G.
Bussi
,
Entropyz
16
,
163
(
2014
).
39.
V.
Spiwok
,
Z.
Sucur
, and
P.
Hosek
,
Biotechnol. Adv.
33
,
1130
(
2015
).
40.
C.
Dellago
and
P. G.
Bolhuis
, in
Advanced Computer Simulation Approaches for Soft Matter Sciences III
, edited by
C.
Holm
and
K.
Kremer
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2009
), p.
167
.
41.
Y. Q.
Gao
,
L.
Yang
,
Y.
Fan
, and
Q.
Shao
,
Int. Rev. Phys. Chem.
27
,
201
(
2008
).
42.
A.
Liwo
,
C.
Czaplewski
,
S.
Ołdziej
, and
H. A.
Scheraga
,
Curr. Opin. Struct. Biol.
18
,
134
(
2008
).
43.
M.
Christen
and
W. F.
van Gunsteren
,
J. Comput. Chem.
29
,
157
(
2008
).
44.
Y.
Miao
and
J. A.
McCammon
,
Mol. Simul.
42
,
1046
(
2016
).
45.
Y.
Miao
,
V. A.
Feher
, and
J. A.
McCammon
,
J. Chem. Theory Comput.
11
,
3584
(
2015
).
46.
Y. T.
Pang
,
Y.
Miao
,
Y.
Wang
, and
J. A.
McCammon
,
J. Chem. Theory Comput.
13
,
9
(
2017
).
47.
Y.
Miao
and
J. A.
McCammon
,
Annu. Rep. Comput. Chem.
13
,
231
(
2017
).
48.
Y.
Miao
,
J. Chem. Phys.
149
,
072308
(
2018
).
49.
Y.
Miao
,
A.
Bhattarai
, and
J.
Wang
,
J. Chem. Theory Comput.
16
,
5526
(
2020
).
50.
J.
Wereszczynski
and
J. A.
McCammon
,
J. Chem. Theory Comput.
6
,
3285
(
2010
).
51.
I.
Deb
and
A. T.
Frank
,
J. Chem. Theory Comput.
15
,
5817
(
2019
).
52.
L.
Zheng
and
W.
Yang
,
J. Chem. Phys.
129
,
014105
(
2008
).
53.
H.
Li
,
D.
Min
,
Y.
Liu
, and
W.
Yang
,
J. Chem. Phys.
127
,
094101
(
2007
).
54.
M.
Ahmad
and
V.
Helms
,
Chem. Cent. J.
3
,
O22
(
2009
).
55.
L. J.
Ball
,
R.
Kühne
,
J.
Schneider-Mergener
, and
H.
Oschkinat
,
Angew. Chem., Int. Ed.
44
,
2852
(
2005
).
56.
K.
Vanommeslaeghe
and
A. D.
MacKerell
, Jr.
,
Biochim. Biophys. Acta
1850
,
861
(
2015
).
57.
Y.
Duan
,
C.
Wu
,
S.
Chowdhury
,
M. C.
Lee
,
G.
Xiong
,
W.
Zhang
,
R.
Yang
,
P.
Cieplak
,
R.
Luo
,
T.
Lee
,
J.
Caldwell
,
J.
Wang
, and
P.
Kollman
,
J. Comput. Chem.
24
,
1999
(
2003
).
58.
D. A.
Case
,
D. S.
Cerutti
,
I. T. E.
Cheatham
, and
R. E. D. T. A.
Darden
,
T. J.
Giese
,
H.
Gohlke
,
A. W.
Goetz
,
D.
Greene
,
N.
Homeyer
,
S.
Izadi
,
A.
Kovalenko
,
T. S.
Lee
,
S.
LeGrand
,
P.
Li
,
C.
Lin
,
J.
Liu
,
T.
Luchko
,
R.
Luo
,
D.
Mermelstein
,
K. M.
Merz
,
G.
Monard
,
H.
Nguyen
,
I.
Omelyan
,
A.
Onufriev
,
F.
Pan
,
R.
Qi
,
D. R.
Roe
,
A.
Roitberg
,
C.
Sagui
,
C. L.
Simmerling
,
W. M.
Botello-Smith
,
J.
Swails
,
R. C.
Walker
,
J.
Wang
,
R. M.
Wolf
,
X.
Wu
,
L.
Xiao
,
D. M.
York
, and
P. A.
Kollman
, AMBER 2020, University of California, San Francisco.
59.
Y.
Miao
and
J. A.
McCammon
, in
Annual Reports in Computational Chemistry
, edited by
D. A.
Dixon
(
Elsevier
,
2017
), p.
231
.
60.
C.
Lv
,
L.
Zheng
, and
W.
Yang
,
J. Chem. Phys.
136
,
044103
(
2012
).
61.
S.
Doudou
,
N. A.
Burton
, and
R. H.
Henchman
,
J. Chem. Theory Comput.
5
,
909
(
2009
).
62.
I.
Buch
,
T.
Giorgino
, and
G.
De Fabritiis
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
10184
(
2011
).
63.
Y.
Miao
,
W.
Sinko
,
L.
Pierce
,
D.
Bucher
,
R. C.
Walker
, and
J. A.
McCammon
,
J. Chem. Theory Comput.
10
,
2677
(
2014
).
64.
N.
Ferruz
and
G.
De Fabritiis
,
Mol. Inf.
35
,
216
(
2016
).
65.
U.
Doshi
and
D.
Hamelberg
,
J. Chem. Theory Comput.
7
,
575
(
2011
).
66.
A. T.
Frank
and
I.
Andricioaei
,
J. Phys. Chem. B
120
,
8600
(
2016
).
67.
D.
Hamelberg
,
T.
Shen
, and
J.
Andrew McCammon
,
J. Chem. Phys.
122
,
241103
(
2005
).
68.
X.
Wu
,
B.
Knudsen
,
S. M.
Feller
,
J.
Zheng
,
A.
Sali
,
D.
Cowburn
,
H.
Hanafusa
, and
J.
Kuriyan
,
Structure
3
,
215
(
1995
).
69.
D. A.
Case
,
T. E.
Cheatham
 III
,
T.
Darden
,
H.
Gohlke
,
R.
Luo
,
K. M.
Merz
, Jr.
,
A.
Onufriev
,
C.
Simmerling
,
B.
Wang
, and
R. J.
Woods
,
J. Comput. Chem.
26
,
1668
(
2005
).
70.
J. A.
Maier
,
C.
Martinez
,
K.
Kasavajhala
,
L.
Wickstrom
,
K. E.
Hauser
, and
C.
Simmerling
,
J. Chem. Theory Comput.
11
,
3696
(
2015
).
71.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
72.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
73.
D. R.
Roe
and
T. E.
Cheatham
 III
,
J. Chem. Theory Comput.
9
,
3084
(
2013
).
74.
S.
Raniolo
and
V.
Limongelli
,
Nat. Protoc.
15
,
2837
(
2020
).
75.
L.
Wang
,
Y.
Wu
,
Y.
Deng
,
B.
Kim
,
L.
Pierce
,
G.
Krilov
,
D.
Lupyan
,
S.
Robinson
,
M. K.
Dahlgren
,
J.
Greenwood
,
D. L.
Romero
,
C.
Masse
,
J. L.
Knight
,
T.
Steinbrecher
,
T.
Beuming
,
W.
Damm
,
E.
Harder
,
W.
Sherman
,
M.
Brewer
,
R.
Wester
,
M.
Murcko
,
L.
Frye
,
R.
Farid
,
T.
Lin
,
D. L.
Mobley
,
W. L.
Jorgensen
,
B. J.
Berne
,
R. A.
Friesner
, and
R.
Abel
,
J. Am. Chem. Soc.
137
,
2695
(
2015
).
76.
N.
Bešker
and
F. L.
Gervasio
,
Current Computer-Aided Drug
(
Springer
,
2012
), p.
501
.
77.
T.
Yuwen
,
Y.
Xue
, and
N. R.
Skrynnikov
,
Biochemistry
55
,
1784
(
2016
).

Supplementary Material

You do not currently have access to this content.