The recently proposed many-body expanded full configuration interaction (MBE-FCI) method is extended to excited states and static first-order properties different from total, ground state correlation energies. Results are presented for excitation energies and (transition) dipole moments of two prototypical, heteronuclear diatomics—LiH and MgO—in augmented correlation consistent basis sets of up to quadruple-ζ quality. Given that MBE-FCI properties are evaluated without recourse to a sampled wave function and the storage of corresponding reduced density matrices, the memory overhead associated with the calculation of general first-order properties only scales with the dimension of the desired property. In combination with the demonstrated performance, the present developments are bound to admit a wide range of future applications by means of many-body expanded treatments of electron correlation.

1.
P. J.
Knowles
and
N. C.
Handy
, “
A new determinant-based full configuration interaction method
,”
Chem. Phys. Lett.
111
,
315
(
1984
).
2.
P. J.
Knowles
and
N. C.
Handy
, “
Unlimited full configuration interaction calculations
,”
J. Chem. Phys.
91
,
2396
(
1989
).
3.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. A.
Jensen
, “
Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces
,”
J. Chem. Phys.
89
,
2185
(
1988
).
4.
J.
Olsen
,
P.
Jørgensen
, and
J.
Simons
, “
Passing the one-billion limit in full configuration-interaction (FCI) calculations
,”
Chem. Phys. Lett.
169
,
463
(
1990
).
5.
J.
Olsen
,
P.
Jørgensen
,
H.
Koch
,
A.
Balkova
, and
R. J.
Bartlett
, “
Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions
,”
J. Chem. Phys.
104
,
8007
(
1996
).
6.
H.
Larsen
,
J.
Olsen
,
P.
Jørgensen
, and
O.
Christiansen
, “
Full configuration interaction benchmarking of coupled-cluster models for the lowest singlet energy surfaces of N2
,”
J. Chem. Phys.
113
,
6677
(
2000
).
7.
C. D.
Sherrill
,
M. L.
Leininger
,
T. J.
Van Huis
, and
H. F.
Schaefer
 III
, “
Structures and vibrational frequencies in the full configuration interaction limit: Predictions for four electronic states of methylene using a triple-zeta plus double polarization (TZ2P) basis
,”
J. Chem. Phys.
108
,
1040
(
1998
).
8.
M. L.
Abrams
and
C. D.
Sherrill
, “
Full configuration interaction potential energy curves for the X1Σg+,B1Δg, and B1Σg+ states of C2: A challenge for approximate methods
,”
J. Chem. Phys.
121
,
9211
(
2004
).
9.
G. H.
Booth
,
D.
Cleland
,
A. J. W.
Thom
, and
A.
Alavi
, “
Breaking the carbon dimer: The challenges of multiple bond dissociation with full configuration interaction quantum Monte Carlo methods
,”
J. Chem. Phys.
135
,
084104
(
2011
).
10.
G. H.
Booth
,
A.
Grüneis
,
G.
Kresse
, and
A.
Alavi
, “
Towards an exact description of electronic wavefunctions in real solids
,”
Nature
493
,
365
(
2013
).
11.
B. S.
Fales
and
B. G.
Levine
, “
Nanoscale multireference quantum chemistry: Full configuration interaction on graphical processing units
,”
J. Chem. Theory Comput.
11
,
4708
(
2015
).
12.
K. D.
Vogiatzis
,
D.
Ma
,
J.
Olsen
,
L.
Gagliardi
, and
W. A.
de Jong
, “
Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations
,”
J. Chem. Phys.
147
,
184111
(
2017
).
13.
S. R.
White
, “
Density matrix formulation for quantum renormalization groups
,”
Phys. Rev. Lett.
69
,
2863
(
1992
).
14.
S. R.
White
, “
Density-matrix algorithms for quantum renormalization groups
,”
Phys. Rev. B
48
,
10345
(
1993
).
15.
S. R.
White
and
R. L.
Martin
, “
Ab initio quantum chemistry using the density matrix renormalization group
,”
J. Chem. Phys.
110
,
4127
(
1999
).
16.
A. O.
Mitrushenkov
,
G.
Fano
,
F.
Ortolani
,
R.
Linguerri
, and
P.
Palmieri
, “
Quantum chemistry using the density matrix renormalization group
,”
J. Chem. Phys.
115
,
6815
(
2001
).
17.
G. K.-L.
Chan
and
M.
Head-Gordon
, “
Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group
,”
J. Chem. Phys.
116
,
4462
(
2002
).
18.
G. K.-L.
Chan
, “
An algorithm for large scale density matrix renormalization group calculations
,”
J. Chem. Phys.
120
,
3172
(
2004
).
19.
S.
Sharma
and
G. K.-L.
Chan
, “
Spin-adapted density matrix renormalization group algorithms for quantum chemistry
,”
J. Chem. Phys.
136
,
124121
(
2012
).
20.
R.
Olivares-Amaya
,
W.
Hu
,
N.
Nakatani
,
S.
Sharma
,
J.
Yang
, and
G. K.-L.
Chan
, “
The ab-initio density matrix renormalization group in practice
,”
J. Chem. Phys.
142
,
034102
(
2015
).
21.
S.
Guo
,
Z.
Li
, and
G. K.-L.
Chan
, “
A perturbative density matrix renormalization group algorithm for large active spaces
,”
J. Chem. Theory Comput.
14
,
4063
(
2018
).
22.
L.
Bytautas
and
K.
Ruedenberg
, “
Correlation energy extrapolation by intrinsic scaling. I. Method and application to the neon atom
,”
J. Chem. Phys.
121
,
10905
(
2004
).
23.
L.
Bytautas
and
K.
Ruedenberg
, “
Correlation energy extrapolation by intrinsic scaling. IV. Accurate binding energies of the homonuclear diatomic molecules carbon, nitrogen, oxygen, and fluorine
,”
J. Chem. Phys.
122
,
154110
(
2005
).
24.
L.
Bytautas
and
K.
Ruedenberg
, “
The range of electron correlation between localized molecular orbitals. A full configuration interaction analysis for the NCCN molecule
,”
J. Phys. Chem. A
114
,
8601
(
2010
).
25.
J. S.
Boschen
,
D.
Theis
,
K.
Ruedenberg
, and
T. L.
Windus
, “
Correlation energy extrapolation by many-body expansion
,”
J. Phys. Chem. A
121
,
836
(
2017
).
26.
E.
Xu
,
M.
Uejima
, and
S. L.
Ten-no
, “
Full coupled-cluster reduction for accurate description of strong electron correlation
,”
Phys. Rev. Lett.
121
,
113001
(
2018
).
27.
J. E.
Deustua
,
J.
Shen
, and
P.
Piecuch
, “
Converging high-level coupled-cluster energetics by Monte Carlo sampling and moment expansions
,”
Phys. Rev. Lett.
119
,
223003
(
2017
).
28.
J. E.
Deustua
,
I.
Magoulas
,
J.
Shen
, and
P.
Piecuch
, “
Communication: Approaching exact quantum chemistry by cluster analysis of full configuration interaction quantum Monte Carlo wave functions
,”
J. Chem. Phys.
149
,
151101
(
2018
).
29.
J. E.
Deustua
,
S. H.
Yuwono
,
J.
Shen
, and
P.
Piecuch
, “
Accurate excited-state energetics by a combination of Monte Carlo sampling and equation-of-motion coupled-cluster computations
,”
J. Chem. Phys.
150
,
111101
(
2019
).
30.
S. H.
Yuwono
,
I.
Magoulas
, and
P.
Piecuch
, “
Quantum computation solves a half-century-old enigma: Elusive vibrational states of magnesium dimer found
,”
Sci. Adv.
6
,
eaay4058
(
2020
).
31.
P. M.
Zimmerman
, “
Incremental full configuration interaction
,”
J. Chem. Phys.
146
,
104102
(
2017
).
32.
P. M.
Zimmerman
, “
Strong correlation in incremental full configuration interaction
,”
J. Chem. Phys.
146
,
224104
(
2017
).
33.
F. R.
Petruzielo
,
A. A.
Holmes
,
H. J.
Changlani
,
M. P.
Nightingale
, and
C. J.
Umrigar
, “
Semistochastic projector Monte Carlo method
,”
Phys. Rev. Lett.
109
,
230201
(
2012
).
34.
A. A.
Holmes
,
H. J.
Changlani
, and
C. J.
Umrigar
, “
Efficient heat-bath sampling in fock space
,”
J. Chem. Theory Comput.
12
,
1561
(
2016
).
35.
A. A.
Holmes
,
N. M.
Tubman
, and
C. J.
Umrigar
, “
Heat-bath configuration interaction: An efficient selected configuration interaction algorithm inspired by heat-bath sampling
,”
J. Chem. Theory Comput.
12
,
3674
(
2016
).
36.
S.
Sharma
,
A. A.
Holmes
,
G.
Jeanmairet
,
A.
Alavi
, and
C. J.
Umrigar
, “
Semistochastic heat-bath configuration interaction method: Selected configuration interaction with semistochastic perturbation theory
,”
J. Chem. Theory Comput.
13
,
1595
(
2017
).
37.
J.
Li
,
M.
Otten
,
A. A.
Holmes
,
S.
Sharma
, and
C. J.
Umrigar
, “
Fast semistochastic heat-bath configuration interaction
,”
J. Chem. Phys.
149
,
214110
(
2018
).
38.
B. S.
Fales
,
S.
Seritan
,
N. F.
Settje
,
B. G.
Levine
,
H.
Koch
, and
T. J.
Martínez
, “
Large scale electron correlation calculations: Rank-reduced full configuration interaction
,”
J. Chem. Theory Comput.
14
,
4139
(
2018
).
39.
W.
Liu
and
M. R.
Hoffmann
, “
iCI: Iterative CI toward full CI
,”
J. Chem. Theory Comput.
12
,
1169
(
2016
).
40.
N.
Zhang
,
W.
Liu
, and
M. R.
Hoffmann
, “
Iterative configuration interaction with selection
,”
J. Chem. Theory Comput.
16
,
2296
(
2020
).
41.
J. P.
Coe
, “
Machine learning configuration interaction
,”
J. Chem. Theory Comput.
14
,
5739
(
2018
).
42.
N. M.
Tubman
,
J.
Lee
,
T. Y.
Takeshita
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
A deterministic alternative to the full configuration interaction quantum Monte Carlo method
,”
J. Chem. Phys.
145
,
044112
(
2016
).
43.
N. M.
Tubman
,
C. D.
Freeman
,
D. S.
Levine
,
D.
Hait
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
Modern approaches to exact diagonalization and selected configuration interaction with the adaptive sampling CI method
,”
J. Chem. Theory Comput.
16
,
2139
(
2020
).
44.
N. M.
Tubman
,
D. S.
Levine
,
D.
Hait
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
An efficient deterministic perturbation theory for selected configuration interaction methods
,” arXiv:1808.02049 (
2018
).
45.
Y.
Garniron
,
A.
Scemama
,
E.
Giner
,
M.
Caffarel
, and
P.-F.
Loos
, “
Selected configuration interaction dressed by perturbation
,”
J. Chem. Phys.
149
,
064103
(
2018
).
46.
J. B.
Schriber
and
F. A.
Evangelista
, “
Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy
,”
J. Chem. Phys.
144
,
161106
(
2016
).
47.
T.
Zhang
and
F. A.
Evangelista
, “
A deterministic projector configuration interaction approach for the ground state of quantum many-body systems
,”
J. Chem. Theory Comput.
12
,
4326
(
2016
).
48.
J. B.
Schriber
and
F. A.
Evangelista
, “
Adaptive configuration interaction for computing challenging electronic excited states with tunable accuracy
,”
J. Chem. Theory Comput.
13
,
5354
(
2017
).
49.
Z.
Wang
,
Y.
Li
, and
J.
Lu
, “
Coordinate descent full configuration interaction
,”
J. Chem. Theory Comput.
15
,
3558
(
2019
).
50.
S. M.
Greene
,
R. J.
Webber
,
J.
Weare
, and
T. C.
Berkelbach
, “
Beyond walkers in stochastic quantum chemistry: Reducing error using fast randomized iteration
,”
J. Chem. Theory Comput.
15
,
4834
(
2019
).
51.
S. M.
Greene
,
R. J.
Webber
,
J.
Weare
, and
T. C.
Berkelbach
, “
Improved fast randomized iteration approach to full configuration interaction
,”
J. Chem. Theory Comput.
16
,
5572
(
2020
).
52.
P. M.
Zimmerman
, “
Singlet-triplet gaps through incremental full configuration interaction
,”
J. Phys. Chem. A
121
,
4712
(
2017
).
53.
A. A.
Holmes
,
C. J.
Umrigar
, and
S.
Sharma
, “
Excited states using semistochastic heat-bath configuration interaction
,”
J. Chem. Phys.
147
,
164111
(
2017
).
54.
A. D.
Chien
,
A. A.
Holmes
,
M.
Otten
,
C. J.
Umrigar
,
S.
Sharma
, and
P. M.
Zimmerman
, “
Excited states of methylene, polyenes, and ozone from heat-bath configuration interaction
,”
J. Phys. Chem. A
122
,
2714
(
2018
).
55.
P.-F.
Loos
,
A.
Scemama
,
A.
Blondel
,
Y.
Garniron
,
M.
Caffarel
, and
D.
Jacquemin
, “
A mountaineering strategy to excited states: Highly accurate reference energies and benchmarks
,”
J. Chem. Theory Comput.
14
,
4360
(
2018
).
56.
P.-F.
Loos
,
M.
Boggio-Pasqua
,
A.
Scemama
,
M.
Caffarel
, and
D.
Jacquemin
, “
Reference energies for double excitations
,”
J. Chem. Theory Comput.
15
,
1939
(
2019
).
57.
P.-F.
Loos
,
F.
Lipparini
,
M.
Boggio-Pasqua
,
A.
Scemama
, and
D.
Jacquemin
, “
A mountaineering strategy to excited states: Highly accurate energies and benchmarks for medium sized molecules
,”
J. Chem. Theory Comput.
16
,
1711
(
2020
).
58.
P.-F.
Loos
,
A.
Scemama
, and
D.
Jacquemin
, “
The quest for highly accurate excitation energies: A computational perspective
,”
J. Phys. Chem. Lett.
11
,
2374
(
2020
).
59.
C. W.
Bauschlicher
, Jr.
and
P. R.
Taylor
, “
Full CI benchmark calculations for molecular properties
,”
Theor. Chim. Acta
71
,
263
(
1987
).
60.
C. W.
Bauschlicher
, Jr.
and
S. R.
Langhoff
, “
Full configuration interaction benchmark calculations for transition moments
,”
Theor. Chim. Acta
73
,
43
(
1988
).
61.
D.
Cremer
,
J.
Gauss
,
E.
Kraka
,
J. F.
Stanton
, and
R. J.
Bartlett
, “
A CCSD(T) investigation of carbonyl oxide and dioxirane. Equilibrium geometries, dipole moments, infrared spectra, heats of formation and isomerization energies
,”
Chem. Phys. Lett.
209
,
547
(
1993
).
62.
H.
Koch
,
R.
Kobayashi
,
A.
Sanchez de Merás
, and
P.
Jørgensen
, “
Calculation of size-intensive transition moments from the coupled cluster singles and doubles linear response function
,”
J. Chem. Phys.
100
,
4393
(
1994
).
63.
A.
Halkier
,
H.
Larsen
,
J.
Olsen
,
P.
Jørgensen
, and
J.
Gauss
, “
Full configuration interaction benchmark calculations of first-order one-electron properties of BH and HF
,”
J. Chem. Phys.
110
,
734
(
1999
).
64.
A.
Halkier
,
W.
Klopper
,
T.
Helgaker
, and
P.
Jørgensen
, “
Basis-set convergence of the molecular electric dipole moment
,”
J. Chem. Phys.
111
,
4424
(
1999
).
65.
K. L.
Bak
,
J.
Gauss
,
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
, “
The accuracy of molecular dipole moments in standard electronic structure calculations
,”
Chem. Phys. Lett.
319
,
563
(
2000
).
66.
A. L.
Hickey
and
C. N.
Rowley
, “
Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities
,”
J. Phys. Chem. A
118
,
3678
(
2014
).
67.
P.
Verma
and
D. G.
Truhlar
, “
Can Kohn–Sham density functional theory predict accurate charge distributions for both single-reference and multi-reference molecules?
,”
Phys. Chem. Chem. Phys.
19
,
12898
(
2017
).
68.
D.
Hait
and
M.
Head-Gordon
, “
How accurate is density functional theory at predicting dipole moments? An assessment using a new database of 200 benchmark values
,”
J. Chem. Theory Comput.
14
,
1969
(
2018
).
69.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
, “
Quantum Monte Carlo simulations of solids
,”
Rev. Mod. Phys.
73
,
33
(
2001
).
70.
R.
Gaudoin
and
J. M.
Pitarke
, “
Hellman–Feynman operator sampling in diffusion Monte Carlo calculations
,”
Phys. Rev. Lett.
99
,
126406
(
2007
).
71.
M. C.
Per
,
I. K.
Snook
, and
S. P.
Russo
, “
Efficient calculation of unbiased expectation values in diffusion quantum Monte Carlo
,”
Phys. Rev. B
86
,
201107
(
2012
).
72.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
, “
Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in slater determinant space
,”
J. Chem. Phys.
131
,
054106
(
2009
).
73.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
, “
Communications: Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo
,”
J. Chem. Phys.
132
,
041103
(
2010
).
74.
R. E.
Thomas
,
D.
Opalka
,
C.
Overy
,
P. J.
Knowles
,
A.
Alavi
, and
G. H.
Booth
, “
Analytic nuclear forces and molecular properties from full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
143
,
054108
(
2015
).
75.
C.
Overy
,
G. H.
Booth
,
N. S.
Blunt
,
J. J.
Shepherd
,
D.
Cleland
, and
A.
Alavi
, “
Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
141
,
244117
(
2014
).
76.
G. H.
Booth
,
D.
Cleland
,
A.
Alavi
, and
D. P.
Tew
, “
An explicitly correlated approach to basis set incompleteness in full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
137
,
164112
(
2012
).
77.
N. S.
Blunt
,
G. H.
Booth
, and
A.
Alavi
, “
Density matrices in full configuration interaction quantum Monte Carlo: Excited states, transition dipole moments, and parallel distribution
,”
J. Chem. Phys.
146
,
244105
(
2017
).
78.
J. J.
Eriksen
,
F.
Lipparini
, and
J.
Gauss
, “
Virtual orbital many-body expansions: A possible route towards the full configuration interaction limit
,”
J. Phys. Chem. Lett.
8
,
4633
(
2017
).
79.
J. J.
Eriksen
and
J.
Gauss
, “
Many-body expanded full configuration interaction. I. Weakly correlated regime
,”
J. Chem. Theory Comput.
14
,
5180
(
2018
).
80.
J. J.
Eriksen
and
J.
Gauss
, “
Many-body expanded full configuration interaction. II. Strongly correlated regime
,”
J. Chem. Theory Comput.
15
,
4873
(
2019
).
81.
J. J.
Eriksen
and
J.
Gauss
, “
Generalized many-body expanded full configuration interaction theory
,”
J. Phys. Chem. Lett.
10
,
7910
(
2019
).
82.
B.
Huron
,
J. P.
Malrieu
, and
P.
Rancurel
, “
Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions
,”
J. Chem. Phys.
58
,
5745
(
1973
).
83.
R. J.
Harrison
, “
Approximating full configuration interaction with selected configuration interaction and perturbation theory
,”
J. Chem. Phys.
94
,
5021
(
1991
).
84.
P.
Stampfuß
and
W.
Wenzel
, “
Improved implementation and application of the individually selecting configuration interaction method
,”
J. Chem. Phys.
122
,
024110
(
2005
).
85.
J. J.
Eriksen
,
T. A.
Anderson
,
J. E.
Deustua
,
K.
Ghanem
,
D.
Hait
,
M. R.
Hoffmann
,
S.
Lee
,
D. S.
Levine
,
I.
Magoulas
,
J.
Shen
,
N. M.
Tubman
,
K. B.
Whaley
,
E.
Xu
,
Y.
Yao
,
N.
Zhang
,
A.
Alavi
,
G. K.-L.
Chan
,
M.
Head-Gordon
,
W.
Liu
,
P.
Piecuch
,
S.
Sharma
,
S. L.
Ten-no
,
C. J.
Umrigar
, and
J.
Gauss
, “
The ground state electronic energy of benzene
,”
J. Phys. Chem. Lett.
11
,
8922
(
2020
).
86.
See https://gitlab.com/januseriksen/pymbe for PyMBE: A Many-Body Expanded Correlation Code by Janus Juul Eriksen.
87.
See https://pyscf.github.io/ for PySCF: The Python-Based Simulations of Chemistry Framework.
88.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.-L.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
89.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
).
90.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
(
1989
).
91.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
(
1992
).
92.
B. O.
Roos
, “
The complete active space self-consistent field method and its applications in electronic structure calculations
,”
Adv. Chem. Phys.
69
,
399
(
1987
).
93.
J.
Noga
and
R. J.
Bartlett
, “
The full CCSDT model for molecular electronic structure
,”
J. Chem. Phys.
86
,
7041
(
1987
);
J.
Noga
and
R. J.
Bartlett
, “
Erratum: The full CCSDT model for molecular electronic structure
J. Chem. Phys.
89
,
3401
(
1988
).
94.
G. E.
Scuseria
and
H. F.
Schaefer
 III
, “
A new implementation of the full CCSDT model for molecular electronic structure
,”
Chem. Phys. Lett.
152
,
382
(
1988
).

Supplementary Material

You do not currently have access to this content.