The ability to understand and engineer molecular structures relies on having accurate descriptions of the energy as a function of atomic coordinates. Here, we outline a new paradigm for deriving energy functions of hyperdimensional molecular systems, which involves generating data for low-dimensional systems in virtual reality (VR) to then efficiently train atomic neural networks (ANNs). This generates high-quality data for specific areas of interest within the hyperdimensional space that characterizes a molecule’s potential energy surface (PES). We demonstrate the utility of this approach by gathering data within VR to train ANNs on chemical reactions involving fewer than eight heavy atoms. This strategy enables us to predict the energies of much higher-dimensional systems, e.g., containing nearly 100 atoms. Training on datasets containing only 15k geometries, this approach generates mean absolute errors around 2 kcal mol−1. This represents one of the first times that an ANN-PES for a large reactive radical has been generated using such a small dataset. Our results suggest that VR enables the intelligent curation of high-quality data, which accelerates the learning process.

1.
S.
Amabilino
,
L. A.
Bratholm
,
S. J.
Bennie
,
A. C.
Vaucher
,
M.
Reiher
, and
D. R.
Glowacki
,
J. Phys. Chem. A
123
,
4486
4499
(
2019
).
2.
A.
Gupta
,
A. T.
Müller
,
B. J. H.
Huisman
,
J. A.
Fuchs
,
P.
Schneider
, and
G.
Schneider
,
Mol. Inf.
37
,
1700111
(
2018
).
3.
M.
Olivecrona
,
T.
Blaschke
,
O.
Engkvist
, and
H.
Chen
,
J. Cheminf.
9
,
48
(
2017
).
4.
M. H. S.
Segler
and
M. P.
Waller
,
Chem. - Eur. J.
23
,
5966
5971
(
2017
).
5.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
,
Chem. Sci.
8
,
3192
3203
(
2017
).
6.
K.
Yao
,
J. E.
Herr
,
D. W.
Toth
,
R.
McKintyre
, and
J.
Parkhill
,
Chem. Sci.
9
,
2261
2269
(
2018
).
7.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
8.
K. T.
Schütt
,
F.
Arbabzadah
,
S.
Chmiela
,
K. R.
Müller
, and
A.
Tkatchenko
,
Nat. Commun.
8
,
13890
(
2017
).
9.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
10.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
,
J. Chem. Theory Comput.
9
,
5395
5403
(
2013
).
11.
C.
Brunken
and
M.
Reiher
,
J. Chem. Theory Comput.
16
,
1646
1665
(
2020
).
12.
G.
Csányi
,
T.
Albaret
,
M. C.
Payne
, and
A.
De Vita
,
Phys. Rev. Lett.
93
,
175503
(
2004
).
13.
B. J.
Braams
and
J. M.
Bowman
,
Int. Rev. Phys. Chem.
28
,
577
606
(
2009
).
14.
F. E.
Penotti
,
Comput. Chem.
21
(
6
),
363
367
(
1997
).
15.
M. A.
Collins
,
Theor. Chem. Acc.
108
,
313
324
(
2002
).
16.
G. G.
Maisuradze
and
D. L.
Thompson
,
J. Phys. Chem. A
107
,
7118
7124
(
2003
).
17.
A.
Warshel
and
R. M.
Weiss
,
J. Am. Chem. Soc.
102
,
6218
6226
(
1980
).
18.
D. R.
Glowacki
,
A. J.
Orr-Ewing
, and
J. N.
Harvey
,
J. Chem. Phys.
143
,
044120
(
2015
).
19.
O. T.
Unke
and
M.
Meuwly
,
J. Chem. Inf. Model.
57
,
1923
1931
(
2017
).
20.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
,
Sci. Adv.
3
,
e1603015
(
2017
).
21.
P. O.
Dral
,
A.
Owens
,
S. N.
Yurchenko
, and
W.
Thiel
,
J. Chem. Phys.
146
,
244108
(
2017
).
22.
N.
Artrith
and
J.
Behler
,
Phys. Rev. B
85
,
045439
(
2012
).
23.
J.
Behler
, “RuNNer-A Neural Network Code for High-Dimensional Potential-Energy Surfaces,” Universität Göttingen (
2018
).
24.
J.
Behler
,
Int. J. Quantum Chem.
115
,
1032
1050
(
2015
).
25.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
,
J. Chem. Phys.
148
,
241722
(
2018
).
26.
M.
O’Connor
,
H. M.
Deeks
,
E.
Dawn
,
O.
Metatla
,
A.
Roudaut
,
M.
Sutton
,
L. M.
Thomas
,
B. R.
Glowacki
,
R.
Sage
,
P.
Tew
,
M.
Wonnacott
,
P.
Bates
,
A. J.
Mulholland
, and
D. R.
Glowacki
,
Sci. Adv.
4
,
eaat2731
(
2018
).
27.
M. B.
O’Connor
,
S. J.
Bennie
,
H. M.
Deeks
,
A.
Jamieson-Binnie
,
A. J.
Jones
,
R. J.
Shannon
,
R.
Walters
,
T. J.
Mitchell
,
A. J.
Mulholland
, and
D. R.
Glowacki
,
J. Chem. Phys.
150
,
220901
(
2019
).
28.
J. J. P.
Stewart
,
J. Mol. Model.
13
,
1173
1213
(
2007
).
29.
M. P.
Haag
,
A. C.
Vaucher
,
M.
Bosson
,
S.
Redon
, and
M.
Reiher
,
ChemPhysChem
15
,
3301
3319
(
2014
).
30.
M. P.
Haag
and
M.
Reiher
,
Int. J. Quantum Chem.
113
,
8
20
(
2012
).
31.
A. C.
Vaucher
,
M. P.
Haag
, and
M.
Reiher
,
J. Comput. Chem.
37
,
805
812
(
2016
).
32.
M. P.
Haag
and
M.
Reiher
,
Faraday Discuss.
169
,
89
118
(
2014
).
33.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
34.
R.
Polly
,
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
Mol. Phys.
102
,
2311
2321
(
2004
).
35.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
36.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
37.
R.
Tibshirani
,
J. R. Stat. Soc.: Ser. B
58
,
267
288
(
1996
).
38.
J.
Behler
,
Chemical Modelling: Applications and Theory
(
The Royal Society of Chemistry
,
2010
), Vol. 7, pp.
1
41
.
39.
A. S.
Christensen
,
L. A.
Bratholm
,
S.
Amabilino
,
J. C.
Kromann
,
F. A.
Faber
,
B.
Huang
,
D. R.
Glowacki
,
A.
Tkatchenko
,
K. R.
Muller
, and
O. A.
von Lilienfeld
, QML: A Python toolkit for quantum machine learning, http://www.qmlcode.org.
40.
R. T.
McGibbon
,
C. X.
Hernández
,
M. P.
Harrigan
,
S.
Kearnes
,
M. M.
Sultan
,
S.
Jastrzebski
,
B. E.
Husic
, and
V. S.
Pande
,
J. Open Source Software
1
(
5
),
34
(
2016
).
41.

Scikit learn R2 score.

42.
A. S.
Christensen
,
L. A.
Bratholm
,
F. A.
Faber
, and
O.
Anatole von Lilienfeld
,
J. Chem. Phys.
152
,
044107
(
2020
).
43.
N. M.
O’Boyle
,
M.
Banck
,
C. A.
James
,
C.
Morley
,
T.
Vandermeersch
, and
G. R.
Hutchison
,
J. Cheminf.
3
,
33
(
2011
).
44.
N. M.
O’Boyle
,
C.
Morley
, and
G. R.
Hutchison
,
Chem. Cent. J.
2
,
5
(
2008
).
45.
T. E.
Oliphant
,
A Guide to NumPy
(
Trelgol Publishing
,
USA
,
2006
).
46.
J. D.
Hunter
,
Comput. Sci. Eng.
9
,
90
95
(
2007
).
47.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
38
(
1996
).
48.
M. D.
Hanwell
,
D. E.
Curtis
,
D. C.
Lonie
,
T.
Vandermeersch
,
E.
Zurek
, and
G. R.
Hutchison
,
J. Cheminf.
4
,
17
(
2012
).
49.
L.
Dagum
and
R.
Menon
,
IEEE Comput. Sci. Eng.
5
,
46
55
(
1998
).
50.
P.
Peterson
,
Int. J. Comput. Sci. Eng.
4
,
296
305
(
2009
).
51.
M.
Abadi
,
P.
Barham
,
J.
Chen
,
Z.
Chen
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
G.
Irving
,
M.
Isard
,
M.
Kudlur
,
J.
Levenberg
,
R.
Monga
,
S.
Moore
,
D. G.
Murray
,
B.
Steiner
,
P.
Tucker
,
V.
Vasudevan
,
P.
Warden
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
Tensorflow: A system for large-scale machine learning
,” in
12th USENIX Symposium on Operating Systems Design and Implementation OSDI 16
(USENIX, 2016).

Supplementary Material

You do not currently have access to this content.