High-performance photocathodes for many prominent particle accelerator applications, such as x-ray free-electron lasers, cannot be grown in situ. These highly reactive materials must be grown and then transported to the electron gun in an ultrahigh-vacuum (UHV) suitcase, during which time monolayer-level oxidation is unavoidable. Thin film Cs3Sb photocathodes were grown on a variety of substrates. Their performance and chemical state were measured by x-ray photoelectron spectroscopy after transport in a UHV suitcase as well as after O2-induced oxidation. The unusual chemistry of cesium oxides enabled trace amounts of oxygen to drive structural reorganization at the photocathode surface. This reorganization pulled cesium from the bulk photocathode, leading to the development of a structurally complex and O2-exposure-dependent cesium oxide layer. This oxidation-induced phase segregation led to downward band bending of at least 0.36 eV as measured from shifts in the Cs 3d5/2 binding energy. At low O2 exposures, the surface developed a low work function cesium suboxide overlayer that had little effect on quantum efficiency (QE). At somewhat higher O2 exposures, the overlayer transformed to Cs2O; no antimony or antimony oxides were observed in the near-surface region. The development of this overlayer was accompanied by a 1000-fold decrease in QE, which effectively destroyed the photocathode via the formation of a tunnel barrier. The O2 exposures necessary for degradation were quantified. As little as 100 L of O2 irreversibly damaged the photocathode. These observations are discussed in the context of the rich chemistry of alkali oxides, along with potential material strategies for photocathode improvement.

1.
J.
Maxson
,
P.
Musumeci
,
L.
Cultrera
,
S.
Karkare
, and
H.
Padmore
, “
Ultrafast laser pulse heating of metallic photocathodes and its contribution to intrinsic emittance
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
865
,
99
104
(
2017
).
2.
J. K.
Bae
,
I.
Bazarov
,
P.
Musumeci
,
S.
Karkare
,
H.
Padmore
, and
J.
Maxson
, “
Brightness of femtosecond nonequilibrium photoemission in metallic photocathodes at wavelengths near the photoemission threshold
,”
J. Appl. Phys.
124
,
244903
(
2018
).
3.
B. L.
Rickman
,
J. A.
Berger
,
A. W.
Nicholls
, and
W. A.
Schroeder
, “
Intrinsic electron beam emittance from metal photocathodes: The effect of the electron effective mass
,”
Phys. Rev. Lett.
111
,
237401
(
2013
).
4.
S.
Karkare
and
I.
Bazarov
, “
Effect of nanoscale surface roughness on transverse energy spread from GaAs photocathodes
,”
Appl. Phys. Lett.
98
,
094104
(
2011
).
5.
G. S.
Gevorkyan
,
S.
Karkare
,
S.
Emamian
,
I. V.
Bazarov
, and
H. A.
Padmore
, “
Effects of physical and chemical surface roughness on the brightness of electron beams from photocathodes
,”
Phys. Rev. Accel. Beams
21
,
093401
(
2018
).
6.
G.
Ebbinghaus
and
A.
Simon
, “
Electronic structure of Rb, Cs, and some of their metallic oxides studied by photoelectron spectroscopy
,”
Chem. Phys.
43
,
117
133
(
1970
).
7.
W. E.
Spicer
, “
Photoemissive, photoconductive, and optical absorption studies of alkali-antimony compounds
,”
Phys. Rev.
112
,
114
122
(
1958
).
8.
N. N.
Greenwood
and
A.
Earnshaw
,
Chemistry of the Elements
(
Oxford
,
Boston
,
1997
).
9.
B.
Woratschek
,
W.
Sesselmann
,
J.
Küppers
,
G.
Ertl
, and
H.
Haberland
, “
The interaction of cesium with oxygen
,”
J. Chem. Phys.
86
,
2411
2422
(
1987
).
10.
M. G.
Burt
and
V.
Heine
, “
The theory of the workfunction of caesium suboxides and caesium films
,”
J. Phys. C: Solid State Phys.
11
,
961
968
(
1978
).
11.
B.
Woratschek
,
G.
Ertl
,
J.
Küppers
,
W.
Sesselmann
, and
H.
Haberland
, “
Evidence for a quantum size effect of the conduction electrons during oxidation of Cs
,”
Phys. Rev. Lett.
57
,
1484
1487
(
1986
).
12.
A.
Simon
, “
Clusters of valence electron poor metals—Structure, bonding, and properties
,”
Angew. Chem., Int. Ed.
27
,
159
183
(
1988
).
13.
J.
Hrbek
,
Y. W.
Yang
, and
J. A.
Rodriguez
, “
Oxidation of cesium multilayers
,”
Surf. Sci.
296
,
164
170
(
1993
).
14.
S. F.
Matar
,
G.
Campet
, and
M. A.
Subramanian
, “
Electronic properties of oxides: Chemical and theoretical approaches
,”
Prog. Solid State Chem.
39
,
70
95
(
2011
).
15.
I. T.
Clark
,
B. S.
Aldinger
,
A.
Gupta
, and
M. A.
Hines
, “
Aqueous etching produces Si(100) surfaces of near-atomic flatness: Stress minimization does not control morphology
,”
J. Phys. Chem. C
114
,
423
428
(
2010
).
16.
M. A.
Hines
,
M. F.
Faggin
,
A.
Gupta
,
B. S.
Aldinger
, and
K.
Bao
, “
Self-propagating surface reactions produce near-ideal Si(100) surfaces
,”
J. Phys. Chem. C
116
,
18920
18929
(
2012
).
17.
L.
Cultrera
,
H.
Lee
, and
I.
Bazarov
, “
Alkali antimonides photocathodes growth using pure metals evaporation from effusion cells
,”
J. Vac. Sci. Technol., B
34
,
011202
(
2015
).
18.
D.
Rayane
,
P.
Melinon
,
B.
Cabaud
,
A.
Hoareau
,
B.
Tribollet
, and
M.
Broyer
, “
Evaporation of tetramers in Sb4n clusters and conditions for the formation of Sb2n+1 clusters
,” in , edited by C. Chapon, M. F. Gillet, and C. R. Henry (
Springer
,
Berlin, Heidelberg
).
19.
S.
Hofmann
,
Auger- and X-Ray Photoelectron Spectroscopy in Materials Science: A User-Oriented Guide
(
Springer
,
Heidelberg
,
2013
).
20.
C. W.
Bates
, Jr.
,
T. M.
van Atekum
,
G. K.
Wertheim
,
D. N. E.
Buchanan
, and
K. E.
Clements
, “
X-ray photoemission studies of superficially oxidized cesium antimonide photoemitters
,”
Appl. Phys. Lett.
38
,
387
389
(
1981
).
21.
L.
Soriano
and
L.
Galán
, “
Interaction of cesium-potassium antimonide photocathode materials with oxygen: An X-ray photoelectron spectroscopy study
,”
Jpn. J. Appl. Phys., Part 1
32
,
4737
4744
(
1993
).
22.
I.
Martini
,
E.
Chevallay
,
V.
Fedosseev
,
C.
Hessler
,
H.
Neupert
,
V.
Nistor
, and
M.
Taborelli
, “
X-ray photoemission spectroscopy studies of cesium antimonide photocathodes for photoinjector applications
,”
Phys. Procedia
77
,
34
41
(
2015
).
23.
W. K.
Liu
,
W. T.
Yuen
, and
R. A.
Stradling
, “
Preparation of InSb substrates for molecular beam epitaxy
,”
J. Vac. Sci. Technol., B
13
,
1539
1545
(
1995
).
24.
C. W.
Bates
, Jr.
,
D.
Das Gupta
,
L.
Galan
, and
D. N. E.
Buchanan
, “
X-ray photoemission studies of cesium antimonide
,”
Thin Solid Films
69
,
175
182
(
1980
).
25.
L.
Soriano
,
L.
Galan
, and
F.
Rueda
, “
An XPS study of Cs2Te photocathode materials
,”
Surf. Interface Anal.
16
,
193
198
(
1990
).
26.
J. A.
Rodriguez
,
W. D.
Clendening
, and
C. T.
Campbell
, “
Adsorption of CO and CO2 on clean and cesium-covered Cu(110)
,”
J. Phys. Chem.
93
,
5238
5248
(
1989
).
27.
A. W.
Grant
and
C. T.
Campbell
, “
Cesium adsorption on TiO2(110)
,”
Phys. Rev. B
55
,
1844
1851
(
1997
).
28.
P. A.
Redhead
, “
Thermal desorption of gases
,”
Vacuum
12
,
203
211
(
1962
).
29.
J.
Jupille
,
P.
Dolle
, and
M.
Besançon
, “
Ionic oxygen species formed in the presence of lithium, potassium, and cesium
,”
Surf. Sci.
260
,
271
285
(
1992
).
30.
Y.
Sun
,
Z.
Liu
,
P.
Pianetta
, and
D.-I.
Lee
, “
Formation of cesium peroxide and cesium superoxide on InP photocathode activated by cesium and oxygen
,”
J. Appl. Phys.
102
,
074908
(
2007
).
31.
C. D.
Wagner
,
L. E.
Davis
,
M. V.
Zeller
,
J. A.
Taylor
,
R. H.
Raymond
, and
L. H.
Gale
, “
Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis
,”
Surf. Interface Anal.
3
,
211
225
(
1981
).
32.
H.
Shi
and
K.
Jacobi
, “
The metal-insulator transition during oxidation of cesium films
,”
Surf. Sci.
276
,
12
20
(
1992
).
33.
P.-W.
Huang
,
H.
Qian
,
Y.
Du
,
W.
Huang
,
Z.
Zhang
, and
C.
Tang
, “
Photoemission and degradation of semiconductor photocathode
,”
Phys. Rev. Accel. Beams
22
,
123403
(
2019
).
34.
C.
Cocchi
,
S.
Mistry
,
M.
Schmeißer
,
R.
Amador
,
J.
Kühn
, and
T.
Kamps
, “
Electronic structure and core electron fingerprints of caesium-based multi-alkali antimonides for ultra-bright electron sources
,”
Sci. Rep.
9
,
18276
(
2019
).
35.
I.
Martini
, “
Characterization of Cs-Sb cathodes for high charge RF photoinjectors
,” Ph.D. dissertation (
CERN and Politecnico di Milano
,
2015
).
36.
I. V.
Bazarov
,
B. M.
Dunham
, and
C. K.
Sinclair
, “
Maximum achievable beam brightness from photoinjectors
,”
Phys. Rev. Lett.
102
,
104801
(
2009
).
37.
F.
Liu
,
N. A.
Moody
,
K. L.
Jensen
,
V.
Pavlenko
,
C. W.
Narvaez Villarrubia
,
A. D.
Mohite
, and
G.
Gupta
, “
Single layer graphene protective gas barrier for copper photocathodes
,”
Appl. Phys. Lett.
110
,
041607
(
2017
).
38.
G.
Wang
,
P.
Yang
,
N. A.
Moody
, and
E. R.
Batista
, “
Overcoming the quantum efficiency-lifetime tradeoff of photocathodes by coating with atomically thin two-dimensional nanomaterials
,”
npj 2D Mater. Appl.
2
,
17
(
2018
).
39.
N.
Cabrera
and
N. F.
Mott
, “
Theory of the oxidation of metals
,”
Rep. Prog. Phys.
12
,
163
185
(
1949
).
40.
Z.
Zhang
and
J. T.
Yates
, Jr.
, “
Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces
,”
Chem. Rev.
112
,
5520
5551
(
2012
).
41.
G.
Wang
,
R.
Pandey
,
N. A.
Moody
, and
E. R.
Batista
, “
Degradation of alkali-based photocathodes from exposure to residual gases: A first-principles study
,”
J. Phys. Chem. C
121
,
8399
8408
(
2017
).

Supplementary Material

You do not currently have access to this content.