We investigate acoustic propagation in amorphous solids by constructing a projection formalism based on separating atomic vibrations into two, “phonon” (P) and “non-phonon” (NP), subspaces corresponding to large and small wavelengths. For a pairwise interaction model, we show the existence of a “natural” separation lengthscale, determined by structural disorder, for which the isolated P subspace presents the acoustic properties of a nearly homogenous (Debye-like) elastic continuum, while the NP one encapsulates all small scale non-affinity effects. The NP eigenstates then play the role of dynamical scatterers for the phonons. However, at variance with a conjecture of defect theories, their spectra present a finite low frequency gap, which turns out to lie around the Boson peak frequency, and only a small fraction of them are highly localized. We then show that small scale disorder effects can be rigorously reduced to the existence, in the Navier-like wave equation of the continuum, of a generalized elasticity tensor, which is not only retarded, since scatterers are dynamical, but also non-local. The full neglect of both retardation and non-locality suffices to account for most of the corrections to Born macroscopic moduli. However, these two features are responsible for sound speed dispersion and have quite a significant effect on the magnitude of sound attenuation. Although it remains open how they impact the asymptotic, large wavelength scaling of sound damping, our findings rule out the possibility of representing an amorphous solid by an inhomogeneous elastic continuum with the standard (i.e., local and static) elastic moduli.

1.
V. L.
Gurevich
,
D. A.
Parshin
, and
H. R.
Schober
, “
On the theory of Boson peak in glasses
,”
J. Exp. Theor. Phys. Lett.
76
,
553
557
(
2002
).
2.
W.
Schirmacher
, “
Some comments on fluctuating-elasticity and local oscillator models for anomalous vibrational excitations in glasses
,”
J. Non-Cryst. Solids
357
,
518
523
(
2011
).
3.
E.
Maurer
and
W.
Schirmacher
, “
Local oscillators vs elastic disorder: A comparison of two models for the Boson peak
,”
J. Low Temp. Phys.
137
,
453
470
(
2004
).
4.
P. W.
Anderson
,
B. I.
Halperin
, and
C. M.
Varma
, “
Anomalous low-temperature thermal properties of glasses and spin glasses
,”
Philos. Mag.
25
,
1
9
(
1972
).
5.
W. A.
Phillips
, “
Tunneling states in amorphous solids
,”
J. Low Temp. Phys.
7
,
351
360
(
1972
).
6.
W. A.
Phillips
, “
Two-level states in glasses
,”
Rep. Prog. Phys.
50
,
1657
1708
(
1987
).
7.
G.
Monaco
and
S.
Mossa
, “
Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
16907
16912
(
2009
).
8.
A.
Marruzzo
,
W.
Schirmacher
,
A.
Fratalocchi
, and
G.
Ruocco
, “
Heterogeneous shear elasticity of glasses: The origin of the Boson peak
,”
Sci. Rep.
3
,
1407
(
2013
).
9.
R.
Busselez
,
T.
Pezeril
, and
V. E.
Gusev
, “
Structural heterogeneities at the origin of acoustic and transport anomalies in glycerol glass-former
,”
J. Chem. Phys.
140
,
234505
(
2014
).
10.
S.
Gelin
,
H.
Tanaka
, and
A.
Lemaître
, “
Anomalous phonon scattering and elastic correlations in amorphous solids
,”
Nat. Mater.
15
,
1177
1181
(
2016
).
11.
W.
Dietsche
and
H.
Kinder
, “
Spectroscopy of phonon-scattering in glass
,”
Phys. Rev. Lett.
43
,
1413
1417
(
1979
).
12.
G.
Monaco
and
V. M.
Giordano
, “
Breakdown of the Debye approximation for the acoustic modes with nanometric wavelengths in glasses
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
3659
3663
(
2009
).
13.
G.
Baldi
,
V. M.
Giordano
,
G.
Monaco
, and
B.
Ruta
, “
Sound attenuation at terahertz frequencies and the Boson peak of vitreous silica
,”
Phys. Rev. Lett.
104
,
195501
(
2010
).
14.
G.
Baldi
,
V. M.
Giordano
, and
G.
Monaco
, “
Elastic anomalies at terahertz frequencies and excess density of vibrational states in silica glass
,”
Phys. Rev. B
83
,
174203
(
2011
).
15.
B.
Ruta
,
G.
Baldi
,
F.
Scarponi
,
D.
Fioretto
,
V. M.
Giordano
, and
G.
Monaco
, “
Acoustic excitations in glassy sorbitol and their relation with the fragility and the Boson peak
,”
J. Chem. Phys.
137
,
214502
(
2012
).
16.
G.
Baldi
,
M.
Zanatta
,
E.
Gilioli
,
V.
Milman
,
K.
Refson
,
B.
Wehinger
,
B.
Winkler
,
A.
Fontana
, and
G.
Monaco
, “
Emergence of crystal-like atomic dynamics in glasses at the nanometer scale
,”
Phys. Rev. Lett.
110
,
185503
(
2013
).
17.
G.
Baldi
,
V. M.
Giordano
,
B.
Ruta
,
R.
Dal Maschio
,
A.
Fontana
, and
G.
Monaco
, “
Anharmonic damping of terahertz acoustic waves in a network glass and its effect on the density of vibrational states
,”
Phys. Rev. Lett.
112
,
125502
(
2014
).
18.
L.
Wang
,
L.
Berthier
,
E.
Flenner
,
P.
Guan
, and
G.
Szamel
, “
Sound attenuation in stable glasses
,”
Soft Matter
15
,
7018
7025
(
2019
).
19.
A.
Moriel
,
G.
Kapteijns
,
C.
Rainone
,
J.
Zylberg
,
E.
Lerner
, and
E.
Bouchbinder
, “
Wave attenuation in glasses: Rayleigh and generalized-Rayleigh scattering scaling
,”
J. Chem. Phys.
151
,
104503
(
2019
).
20.
L.
Hong
,
V. N.
Novikov
, and
A. P.
Sokolov
, “
Is there a connection between fragility of glass forming systems and dynamic heterogeneity/cooperativity?
,”
J. Non-Cryst. Solids
357
,
351
356
(
2011
).
21.
L.
Hong
,
V. N.
Novikov
, and
A. P.
Sokolov
, “
Dynamic heterogeneities, Boson peak, and activation volume in glass-forming liquids
,”
Phys. Rev. E
83
,
061508
(
2011
).
22.
C.
Rainone
,
E.
Bouchbinder
, and
E.
Lerner
, “
Pinching a glass reveals key properties of its soft spots
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
5228
(
2020
).
23.
C.
Caroli
and
A.
Lemaitre
, “
Fluctuating elasticity fails to capture anomalous sound scattering in amorphous solids
,”
Phys. Rev. Lett.
123
,
055501
(
2019
).
24.
S. N.
Taraskin
and
S. R.
Elliott
, “
Anharmonicity and localization of atomic vibrations in vitreous silica
,”
Phys. Rev. B
59
,
8572
8585
(
1999
).
25.

Since our objective is to understand how to reconstruct the full system by recoupling the P and NP problems, we limit our investigation to n ≥ 6, because the full system data were shown to be size-independent only under this condition.10 

26.
J.
Horbach
,
W.
Kob
, and
K.
Binder
, “
Structural and dynamical properties of sodium silicate melts: An investigation by molecular dynamics computer simulation
,”
Chem. Geol.
174
,
87
101
(
2001
).
27.
H. R.
Schober
, “
Vibrations and relaxations in a soft sphere glass: Boson peak and structure factors
,”
J. Phys.: Condens. Matter
16
,
S2659
S2670
(
2004
).
28.
O.
Pilla
,
S.
Caponi
,
A.
Fontana
,
J. R.
Gonçalves
,
M.
Montagna
,
F.
Rossi
,
G.
Viliani
,
L.
Angelani
,
G.
Ruocco
,
G.
Monaco
, and
F.
Sette
, “
The low energy excess of vibrational states in v-SiO2: The role of transverse dynamics
,”
J. Phys.: Condens. Matter
16
,
8519
8530
(
2004
).
29.
H.
Shintani
and
H.
Tanaka
, “
Universal link between the Boson peak and transverse phonons in glass
,”
Nat. Mater.
7
,
870
877
(
2008
).
30.
V.
Mazzacurati
,
G.
Ruocco
, and
M.
Sampoli
, “
Low-frequency atomic motion in a model glass
,”
Europhys. Lett.
34
,
681
686
(
1996
).
31.
P. B.
Allen
,
J. L.
Feldman
,
J.
Fabian
, and
F.
Wooten
, “
Diffusons, locons and propagons: Character of atomic vibrations in amorphous Si
,”
Philos. Mag. B
79
,
1715
1731
(
1999
).
32.
H. R.
Schober
and
G.
Ruocco
, “
Size effects and quasilocalized vibrations
,”
Philos. Mag.
84
,
1361
1372
(
2004
).
33.
H.
Mizuno
,
H.
Shiba
, and
A.
Ikeda
, “
Continuum limit of the vibrational properties of amorphous solids
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
E9767
E9774
(
2017
).
34.
M.
Shimada
,
H.
Mizuno
, and
A.
Ikeda
, “
Anomalous vibrational properties in the continuum limit of glasses
,”
Phys. Rev. E
97
,
022609
(
2018
).
35.
E.
Lerner
,
G.
Düring
, and
E.
Bouchbinder
, “
Statistics and properties of low-frequency vibrational modes in structural glasses
,”
Phys. Rev. Lett.
117
,
035501
(
2016
).
36.
E.
Lerner
and
E.
Bouchbinder
, “
Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses
,”
Phys. Rev. E
96
,
020104
(
2017
).
37.
A.
Lemaître
, “
Inherent stress correlations in a quiescent two-dimensional liquid: Static analysis including finite-size effects
,”
Phys. Rev. E
96
,
052101
(
2017
).
38.
A.
Lemaître
and
C.
Maloney
, “
Sum rules for the quasi-static and visco-elastic response of disordered solids at zero temperature
,”
J. Stat. Phys.
123
,
415
(
2006
).
39.
J. C.
Dyre
, “
Hidden scale invariance in condensed matter
,”
J. Phys. Chem. B
118
,
10007
10024
(
2014
).
40.
R. D.
Mindlin
, “
Second gradient of strain and surface-tension in linear elasticity
,”
Int. J. Solids Struct.
1
,
417
438
(
1965
).
41.
M.
Tsamados
,
A.
Tanguy
,
C.
Goldenberg
, and
J. L.
Barrat
, “
Local elasticity map and plasticity in a model Lennard-Jones glass
,”
Phys. Rev. E
80
,
026112
(
2009
).
42.
P. M.
Derlet
,
R.
Maass
, and
J. F.
Loeffler
, “
The Boson peak of model glass systems and its relation to atomic structure
,”
Eur. Phys. J. B
85
,
148
(
2012
).
43.
H.
Mizuno
,
S.
Mossa
, and
J.-L.
Barrat
, “
Measuring spatial distribution of the local elastic modulus in glasses
,”
Phys. Rev. E
87
,
042306
(
2013
).
44.
H.
Mizuno
,
S.
Mossa
, and
J.-L.
Barrat
, “
Acoustic excitations and elastic heterogeneities in disordered solids
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
11949
11954
(
2014
).
45.

The adiabatic scheme requires inverting the NP sub-block of the Hessian at each integration timestep; the adiabatic and local scheme demands a full diagonalization of the NP problem.

You do not currently have access to this content.