A full-dimensional rigorous quantum mechanical treatment of non-reactive inelastic scattering of an open-shell diatom [e.g., NO(2Π)] with a structureless and spinless atom is presented within the time-independent close-coupling framework. The inclusion of the diatomic vibrational degree of freedom allows the investigation of transitions between different vibrational manifolds, in addition to those between different rotational, spin–orbit, and Λ-doublet states. This method is applied to the scattering of vibrationally excited NO(2Π) with Ar and H (with its spin ignored). The former has negligible vibrational inelasticity, thanks to the weak interaction between the two collisional partners. This conclusion justifies the commonly used two-dimensional approximation in treating NO scattering with rare gas atoms. The latter, on the other hand, is shown to undergo significant vibrational relaxation, even in the ultra-cold regime, owing to a chemically bonded (HNO) complex on the lowest-lying singlet potential energy surfaces.

1.
K. T.
Lorenz
,
D. W.
Chandler
,
J. W.
Barr
,
W.
Chen
,
G. L.
Barnes
, and
J. I.
Cline
,
Science
293
(
5537
),
2063
2066
(
2001
).
2.
H.
Kohguchi
,
T.
Suzuki
, and
M. H.
Alexander
,
Science
294
(
5543
),
832
834
(
2001
).
3.
M. S.
Elioff
,
J. J.
Valentini
, and
D. W.
Chandler
,
Science
302
(
5652
),
1940
1943
(
2003
).
4.
J. J.
Gilijamse
,
S.
Hoekstra
,
S. Y. T.
van de Meerakker
,
G. C.
Groenenboom
, and
G.
Meijer
,
Science
313
(
5793
),
1617
1620
(
2006
).
5.
B. C.
Sawyer
,
B. K.
Stuhl
,
D.
Wang
,
M.
Yeo
, and
J.
Ye
,
Phys. Rev. Lett.
101
(
20
),
203203
(
2008
).
6.
C. J.
Eyles
,
M.
Brouard
,
C.-H.
Yang
,
J.
Kłos
,
F. J.
Aoiz
,
A.
Gijsbertsen
,
A. E.
Wiskerke
, and
S.
Stolte
,
Nat. Chem.
3
(
8
),
597
602
(
2011
).
7.
M.
Kirste
,
X.
Wang
,
H. C.
Schewe
,
G.
Meijer
,
K.
Liu
,
A.
van der Avoird
,
L. M. C.
Janssen
,
K. B.
Gubbels
,
G. C.
Groenenboom
, and
S. Y. T.
van de Meerakker
,
Science
338
(
6110
),
1060
1063
(
2012
).
8.
G.
Sarma
,
S.
Marinakis
,
J. J.
ter Meulen
,
D. H.
Parker
, and
K. G.
McKendrick
,
Nat. Chem.
4
(
12
),
985
989
(
2012
).
9.
A.
von Zastrow
,
J.
Onvlee
,
S. N.
Vogels
,
G. C.
Groenenboom
,
A.
van der Avoird
, and
S. Y. T.
van de Meerakker
,
Nat. Chem.
6
,
216
221
(
2014
).
10.
B.
Nichols
,
H.
Chadwick
,
S. D. S.
Gordon
,
C. J.
Eyles
,
B.
Hornung
,
M.
Brouard
,
M. H.
Alexander
,
F. J.
Aoiz
,
A.
Gijsbertsen
, and
S.
Stolte
,
Chem. Sci.
6
(
4
),
2202
2210
(
2015
).
11.
S. N.
Vogels
,
J.
Onvlee
,
S.
Chefdeville
,
A.
van der Avoird
,
G. C.
Groenenboom
, and
S. Y. T.
van de Meerakker
,
Science
350
(
6262
),
787
790
(
2015
).
12.
J.
Onvlee
,
S. D. S.
Gordon
,
S. N.
Vogels
,
T.
Auth
,
T.
Karman
,
B.
Nichols
,
A.
van der Avoird
,
G. C.
Groenenboom
,
M.
Brouard
, and
S. Y. T.
van de Meerakker
,
Nat. Chem.
9
,
226
(
2017
).
13.
S. N.
Vogels
,
T.
Karman
,
J.
Kłos
,
M.
Besemer
,
J.
Onvlee
,
A.
van der Avoird
,
G. C.
Groenenboom
, and
S. Y. T.
van de Meerakker
,
Nat. Chem.
10
(
4
),
435
440
(
2018
).
14.
Z.
Gao
,
T.
Karman
,
S. N.
Vogels
,
M.
Besemer
,
A.
van der Avoird
,
G. C.
Groenenboom
, and
S. Y. T.
van de Meerakker
,
Nat. Chem.
10
(
4
),
469
473
(
2018
).
15.
T.
de Jongh
,
M.
Besemer
,
Q.
Shuai
,
T.
Karman
,
A.
van der Avoird
,
G. C.
Groenenboom
, and
S. Y. T.
van de Meerakker
,
Science
368
(
6491
),
626
(
2020
).
16.
R. N.
Dixon
,
D. W.
Hwang
,
X. F.
Yang
,
S.
Harich
,
J. J.
Lin
, and
X.
Yang
,
Science
285
,
1249
1253
(
1999
).
17.
S. A.
Lahankar
,
J.
Zhang
,
K. G.
McKendrick
, and
T. K.
Minton
,
Nat. Chem.
5
,
315
319
(
2013
).
18.
D.
Yuan
,
Y.
Guan
,
W.
Chen
,
H.
Zhao
,
S.
Yu
,
C.
Luo
,
Y.
Tan
,
T.
Xie
,
X.
Wang
,
Z.
Sun
,
D. H.
Zhang
, and
X.
Yang
,
Science
362
(
6420
),
1289
1293
(
2018
).
19.
S.
Han
,
C. E.
Gunthardt
,
R.
Dawes
,
D.
Xie
,
S. W.
North
, and
H.
Guo
,
Proc. Natl. Acad. Sci. U. S. A.
117
(
35
),
21065
21069
(
2020
).
20.
S. Y. T.
van de Meerakker
,
H. L.
Bethlem
,
N.
Vanhaecke
, and
G.
Meijer
,
Chem. Rev.
112
(
9
),
4828
4878
(
2012
).
21.
J.
Jankunas
and
A.
Osterwalder
,
Annu. Rev. Phys. Chem.
66
(
1
),
241
262
(
2015
).
22.
D. W.
Chandler
,
P. L.
Houston
, and
D. H.
Parker
,
J. Chem. Phys.
147
(
1
),
013601
(
2017
).
23.
M. H.
Alexander
,
J. Chem. Phys.
76
(
12
),
5974
5988
(
1982
).
24.
M. H.
Alexander
,
Chem. Phys.
92
(
2
),
337
344
(
1985
).
25.
M. H.
Alexander
and
P. J.
Dagdigian
,
J. Chem. Phys.
80
(
9
),
4325
4333
(
1984
).
26.

HIBRIDON is a package of programs for the time-independent quantum treatment of inelastic collisions and photodissociation written by M. H. Alexander, D. E. Manolopoulos, H.-J. Werner, B. Follmeg, P. J. Dagdigian, P. F. Vohralik, D. Lemoine, G. Corey, R. Gordon, B. Johnson, T. Orlikowski, A. Berning, A. Degli-Esposti, C. Rist, B. Pouilly, G. v. d. Sanden, M. Yang, F. d. Weerd, S. Gregurick, J. Klos, and F. Lique..

27.
M. H.
Alexander
,
J. Chem. Phys.
99
(
10
),
7725
7738
(
1993
).
28.
M. H.
Alexander
,
J. Chem. Phys.
111
(
16
),
7426
7434
(
1999
).
29.
H.
Cybulski
and
B.
Fernández
,
J. Phys. Chem. A
116
(
27
),
7319
7328
(
2012
).
30.
W. E.
Perreault
,
N.
Mukherjee
, and
R. N.
Zare
,
Science
358
(
6361
),
356
359
(
2017
).
31.
W. E.
Perreault
,
N.
Mukherjee
, and
R. N.
Zare
,
Nat. Chem.
10
(
5
),
561
567
(
2018
).
32.
C.
Amarasinghe
,
H.
Li
,
C. A.
Perera
,
M.
Besemer
,
A.
van der Avoird
,
G. C.
Groenenboom
,
C.
Xie
,
H.
Guo
, and
A. G.
Suits
,
J. Phys. Chem. Lett.
10
(
10
),
2422
2427
(
2019
).
33.
C.
Amarasinghe
,
H.
Li
,
C. A.
Perera
,
M.
Besemer
,
J.
Zuo
,
C.
Xie
,
A.
van der Avoird
,
G. C.
Groenenboom
,
H.
Guo
,
J.
Kłos
, and
A. G.
Suits
,
Nat. Chem.
12
,
528
534
(
2020
).
34.
X.
Ye
,
M.
Guo
,
M. L.
González-Martínez
,
G.
Quéméner
, and
D.
Wang
,
Sci. Adv.
4
(
1
),
eaaq0083
(
2018
).
35.
T.
Stoecklin
,
A.
Voronin
, and
J. C.
Rayez
,
Phys. Rev. A
66
(
4
),
042703
(
2002
).
36.
F.
Lique
,
A.
Spielfiedel
,
G.
Dhont
, and
N.
Feautrier
,
Astron. Astrophys.
458
(
1
),
331
337
(
2006
).
37.
P. J.
Dagdigian
and
M. H.
Alexander
,
Adv. Chem. Phys.
163
,
1
43
(
2018
).
38.
D.
Skouteris
,
J. F.
Castillo
, and
D. E.
Manolopoulos
,
Comput. Phys. Commun.
133
,
128
(
2000
).
39.
P.
Honvault
and
J.-M.
Launay
, in
Theory of Chemical Reaction Dynamics
, edited by
A.
Lagana
and
G.
Lendvay
(
Kluwer
,
Dordrecht
,
2004
), p.
187
.
40.
J. M.
Hutson
and
C. R.
Le Sueur
,
Comput. Phys. Commun.
241
,
9
18
(
2019
).
41.
B. K.
Kendrick
,
J. Chem. Phys.
148
(
4
),
044116
(
2018
).
42.
R. V.
Krems
,
Phys. Chem. Chem. Phys.
10
,
4079
4092
(
2008
).
43.
N.
Balakrishnan
,
J. Chem. Phys.
145
(
15
),
150901
(
2016
).
44.
R. N.
Zare
,
A. L.
Schmeltekopf
,
W. J.
Harrop
, and
D. L.
Albritton
,
J. Mol. Spectrosc.
46
(
1
),
37
66
(
1973
).
45.
M. H.
Alexander
,
P.
Andresen
,
R.
Bacis
,
R.
Bersohn
,
F. J.
Comes
,
P. J.
Dagdigian
,
R. N.
Dixon
,
R. W.
Field
,
G. W.
Flynn
,
K. H.
Gericke
,
E. R.
Grant
,
B. J.
Howard
,
J. R.
Huber
,
D. S.
King
,
J. L.
Kinsey
,
K.
Kleinermanns
,
K.
Kuchitsu
,
A. C.
Luntz
,
A. J.
McCaffery
,
B.
Pouilly
,
H.
Reisler
,
S.
Rosenwaks
,
E. W.
Rothe
,
M.
Shapiro
,
J. P.
Simons
,
R.
Vasudev
,
J. R.
Wiesenfeld
,
C.
Wittig
, and
R. N.
Zare
,
J. Chem. Phys.
89
(
4
),
1749
1753
(
1988
).
46.
B. R.
Johnson
,
J. Comput. Phys.
13
(
3
),
445
449
(
1973
).
47.
A.
Li
,
H.
Han
, and
D.
Xie
,
J. Chem. Phys.
135
,
104304
(
2011
).
48.
A.
Li
,
C.
Xie
,
D.
Xie
, and
H.
Guo
,
J. Chem. Phys.
134
,
194309
(
2011
).
49.
E. P.
Wigner
,
Phys. Rev.
73
(
9
),
1002
1009
(
1948
).
50.
L.
Bonnet
,
Int. Rev. Phys. Chem.
32
,
171
228
(
2013
).
51.
H.
Guo
,
Int. Rev. Phys. Chem.
31
(
1
),
1
68
(
2012
).
52.
D. L.
Osborn
,
Annu. Rev. Phys. Chem.
68
(
1
),
233
260
(
2017
).
53.
P.
Pechukas
and
J. C.
Light
,
J. Chem. Phys.
42
,
3281
3291
(
1965
).
54.
W. H.
Miller
,
J. Chem. Phys.
52
,
543
551
(
1970
).
55.
E. J.
Rackham
,
F.
Huarte-Larrañaga
, and
D. E.
Manolopoulos
,
Chem. Phys. Lett.
343
,
356
364
(
2001
).
56.
S. Y.
Lin
and
H.
Guo
,
J. Chem. Phys.
120
,
9907
9910
(
2004
).
57.
D.
Yang
,
J.
Huang
,
X.
Hu
,
D.
Xie
, and
H.
Guo
,
J. Chem. Phys.
152
(
24
),
241103
(
2020
).

Supplementary Material

You do not currently have access to this content.