We present high-accuracy correlated calculations of small SixHy molecular systems in both the ground and excited states. We employ quantum Monte Carlo (QMC) together with a variety of many-body wave function approaches based on basis set expansions. The calculations are carried out in a valence-only framework using recently derived correlation consistent effective core potentials. Our primary goal is to understand the fixed-node diffusion QMC errors in both the ground and excited states with single-reference trial wave functions. Using a combination of methods, we demonstrate the very high accuracy of the QMC atomization energies being within ≈0.07 eV or better when compared with essentially exact results. By employing proper choices for trial wave functions, we have found that the fixed-node QMC biases for total energies are remarkably uniform ranging between 1% and 3.5% with absolute values at most ≈0.2 eV across the systems and several types of excitations such as singlets and triplets as well as low-lying and Rydberg-like states. Our results further corroborate that Si systems, and presumably also related main group IV and V elements of the periodic table (Ge, Sn, etc), exhibit some of the lowest fixed-node biases found in valence-only electronic structure QMC calculations.

1.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
, “
Quantum Monte Carlo simulations of solids
,”
Rev. Mod. Phys.
73
(
1
),
33
83
(
2001
).
2.
L. K.
Wagner
and
D. M.
Ceperley
, “
Discovering correlated fermions using quantum Monte Carlo
,”
Rep. Prog. Phys.
79
(
9
),
094501
(
2016
).
3.
F.
Becca
and
S.
Sorella
,
Quantum Monte Carlo Approaches for Correlated Systems
(
Cambridge University Press
,
2017
).
4.
J.
Shee
,
E. J.
Arthur
,
S.
Zhang
,
D. R.
Reichman
, and
R. A.
Friesner
, “
Phaseless auxiliary-field quantum Monte Carlo on graphical processing units
,”
J. Chem. Theory Comput.
,
14
(
8
):
4109
4121
(
2018
).
5.
G. H.
Booth
,
A.
Grüneis
,
G.
Kresse
, and
A.
Alavi
, “
Towards an exact description of electronic wavefunctions in real solids
,”
Nature
493
(
7432
),
365
370
(
2013
).
6.
P. J.
Reynolds
,
D. M.
Ceperley
,
B. J.
Alder
, and
W. A.
Lester
, “
Fixed-node quantum Monte Carlo for molecules
,”
J. Chem. Phys.
77
(
11
),
5593
5603
(
1982
).
7.
Pseudopotential Library: A community website for pseudopotentials/effective core potentials developed for high accuracy correlated many-body methods such as quantum Monte Carlo and quantum chemistry, https://pseudopotentiallibrary.org, accessed 30 May 2020.
8.
M. C.
Bennett
,
C. A.
Melton
,
A.
Annaberdiyev
,
G.
Wang
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials for correlated calculations
,”
J. Chem. Phys.
147
(
22
),
224106
(
2017
).
9.
M. C.
Bennett
,
G.
Wang
,
A.
Annaberdiyev
,
C. A.
Melton
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials from correlated calculations: 2nd row elements
,”
J. Chem. Phys.
149
(
10
),
104108
(
2018
).
10.
A.
Annaberdiyev
,
G.
Wang
,
C. A.
Melton
,
M.
Chandler Bennett
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials from correlated calculations: 3d transition metal series
,”
J. Chem. Phys.
149
(
13
),
134108
(
2018
).
11.
G.
Wang
,
A.
Annaberdiyev
,
C. A.
Melton
,
M. C.
Bennett
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials from correlated calculations: 4s and 4p main group elements and first row additions
,”
J. Chem. Phys.
151
(
14
),
144110
(
2019
).
12.
A.
Bande
,
A.
Lüchow
,
F.
Della Sala
, and
A.
Görling
, “
Rydberg states with quantum Monte Carlo
,”
J. Chem. Phys.
124
(
11
),
114114
(
2006
).
13.
F.
Schautz
and
C.
Filippi
, “
Optimized Jastrow–Slater wave functions for ground and excited states: Application to the lowest states of ethene
,”
J. Chem. Phys.
120
(
23
),
10931
10941
(
2004
).
14.
K. M.
Rasch
,
S.
Hu
, and
L.
Mitas
, “
Communication: Fixed-node errors in quantum Monte Carlo: Interplay of electron density and node nonlinearities
,”
J. Chem. Phys.
140
(
4
),
041102
(
2014
).
15.
M.
Burkatzki
,
C.
Filippi
, and
M.
Dolg
, “
Energy-consistent pseudopotentials for quantum Monte Carlo calculations
,”
J. Chem. Phys.
126
(
23
),
234105
(
2007
).
16.
A. J. C.
Varandas
, “
Accurate ab initio-based molecular potentials: From extrapolation methods to global modelling
,”
Phys. Scr.
76
(
3
),
C28
C35
(
2007
).
17.
A.
Annaberdiyev
,
C. A.
Melton
,
M. C.
Bennett
,
G.
Wang
, and
L.
Mitas
, “
Accurate atomic correlation and total energies for correlation consistent effective core potentials
,”
J. Chem. Theory Comput.
16
(
3
),
1482
1502
(
2020
).
18.
M.
Casula
, “
Beyond the locality approximation in the standard diffusion Monte Carlo method
,”
Phys. Rev. B
74
(
16
),
161102
(
2006
).
19.
M.
Casula
,
S.
Moroni
,
S.
Sorella
, and
C.
Filippi
, “
Size-consistent variational approaches to nonlocal pseudopotentials: Standard and lattice regularized diffusion Monte Carlo methods revisited
,”
J. Chem. Phys.
132
(
15
),
154113
(
2010
).
20.
R.
Escribano
and
A.
Campargue
, “
Absorption spectroscopy of SiH2 near 640 nm
,”
J. Chem. Phys.
108
(
15
),
6249
6257
(
1998
).
21.
D. R. J.
Boyd
, “
Infrared spectrum of trideuterosilane and the structure of the silane molecule
,”
J. Chem. Phys.
23
(
5
),
922
926
(
1955
).
22.
G. R.
Gupte
and
R.
Prasad
, “
Ground state geometries and vibrational spectra of small hydrogenated silicon clusters using nonorthogonal tight-binding molecular dynamics
,”
Int. J. Mod. Phys. B
12
(
15
),
1607
1622
(
1998
).
23.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
(
2
),
242
253
(
2012
).
24.
M.
Kállay
,
P. R.
Nagy
,
D.
Mester
,
Z.
Rolik
,
G.
Samu
,
J.
Csontos
,
J.
Csóka
,
P. B.
Szabó
,
L.
Gyevi-Nagy
,
B.
Hégely
,
I.
Ladjánszki
,
L.
Szegedy
,
B.
Ladóczki
,
K.
Petrov
,
M.
Farkas
,
P. D.
Mezei
, and
Á.
Ganyecz
, “
The MRCC program system: Accurate quantum chemistry from water to proteins
,”
J. Chem. Phys.
152
(
7
),
074107
(
2020
).
25.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
, and
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K. L.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
(
1
),
e1340
(
2018
).
26.
M. W.
Sharma
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
, “
General atomic and molecular electronic structure system
,”
J. Comput. Chem.
14
(
11
),
1347
1363
(
1993
).
27.
Y.
Garniron
,
T.
Applencourt
,
K.
Gasperich
,
A.
Benali
,
Ferté
A.
,
J.
Paquier
,
B.
Pradines
,
Assaraf
R.
,
P.
Reinhardt
,
J.
Toulouse
,
P.
Barbaresco
,
N.
Renon
,
David
,
G.
,
J.-P.
Malrieu
,
M.
Véril
,
M.
Caffarel
,
P.-F.
Loos
,
E.
Giner
, and
A.
Scemama
, “
Quantum package 2.0: An open-source determinant-driven suite of programs
,”
J. Chem. Theory Comput.
15
(
6
),
3591
3609
(
2019
).
28.
L. K.
Wagner
,
M.
Bajdich
, and
L.
Mitas
, “
QWalk: A quantum Monte Carlo program for electronic structure
,”
J. Comput. Phys.
228
(
9
),
3390
3404
(
2009
).
29.
J.
Kim
,
A. D.
Baczewski
,
T. D.
Beaudet
,
A.
Benali
,
M. C.
Bennett
,
M. A.
Berrill
,
N. S.
Blunt
,
E. J. L.
Borda
,
M.
Casula
,
D. M.
Ceperley
,
S.
Chiesa
,
B. K.
Clark
,
R. C.
Clay
,
K. T.
Delaney
,
M.
Dewing
,
K. P.
Esler
,
H.
Hao
,
O.
Heinonen
,
P. R. C.
Kent
,
J. T.
Krogel
,
I.
Kylänpää
,
Y. W.
Li
,
M. G.
Lopez
,
Y.
Luo
,
F. D.
Malone
,
R. M.
Martin
,
A.
Mathuriya
,
J.
McMinis
,
C. A.
Melton
,
L.
Mitas
,
M. A.
Morales
,
E.
Neuscamman
,
W. D.
Parker
,
S. D.
Pineda Flores
,
N. A.
Romero
,
B. M.
Rubenstein
,
J. A. R.
Shea
,
H.
Shin
,
L.
Shulenburger
,
A. F.
Tillack
,
J. P.
Townsend
,
N. M.
Tubman
,
B.
Van Der Goetz
,
J. E.
Vincent
,
D. C.
Yang
,
Y.
Yang
,
S.
Zhang
, and
L.
Zhao
, “
QMCPACK: An open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids
,”
J. Phys.: Condens. Matter
30
(
19
),
195901
(
2018
).
30.
P. R. C.
Kent
,
A.
Annaberdiyev
,
A.
Benali
,
M. C.
Bennett
,
E. J.
Landinez Borda
,
P.
Doak
,
H.
Hao
,
K. D.
Jordan
,
J. T.
Krogel
,
I.
Kylänpää
,
J.
Lee
,
Y.
Luo
,
F. D.
Malone
,
C. A.
Melton
,
L.
Mitas
,
M. A.
Morales
,
E.
Neuscamman
,
F. A.
Reboredo
,
B.
Rubenstein
,
K.
Saritas
,
S.
Upadhyay
,
G.
Wang
,
S.
Zhang
, and
L.
Zhao
, “
QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion quantum Monte Carlo
,”
J. Chem. Phys.
152
(
17
),
174105
(
2020
).
31.
Y.
Yao
,
E.
Giner
,
J.
Li
,
J.
Toulouse
, and
C. J.
Umrigar
, “
Almost exact energies for the Gaussian-2 set with the semistochastic heat-bath configuration interaction method
,”
J. Chem. Phys.
153
,
124117
(
2020
).
32.
G.
Duxbury
,
A.
Alijah
, and
R. R.
Trieling
, “
Renner–Teller and spin–orbit interactions in SiH2
,”
J. Chem. Phys.
98
(
2
),
811
825
(
1993
).
33.
K.
Balasubramanian
and
A. D.
McLean
, “
The singlet–triplet energy separation in silylene
,”
J. Chem. Phys.
85
(
9
),
5117
5119
(
1986
).
34.
O.
Lehtonen
and
D.
Sundholm
, “
Coupled-cluster studies of the electronic excitation spectra of silanes
,”
J. Chem. Phys.
125
(
14
),
144314
(
2006
).
35.
A. R.
Porter
,
O. K.
Al-Mushadani
,
M. D.
Towler
, and
R. J.
Needs
, “
Electronic excited-state wave functions for quantum Monte Carlo: Application to silane and methane
,”
J. Chem. Phys.
114
(
18
),
7795
7804
(
2001
).
36.
J. C.
Grossman
,
M.
Rohlfing
,
L.
Mitas
,
S. G.
Louie
, and
M. L.
Cohen
, “
High accuracy many-body calculational approaches for excitations in molecules
,”
Phys. Rev. Lett.
86
(
3
),
472
475
(
2001
).
37.
M. A.
Dillon
,
R. G.
Wang
,
Z. W.
Wang
, and
D.
Spence
, “
Electron impact spectroscopy of silane and germane
,”
J. Chem. Phys.
82
(
7
),
2909
2917
(
1985
).
38.
M. G.
Curtis
and
I. C.
Walker
, “
Low-energy electron-impact excitation of methane, silane, tetrafluoromethane and tetrafluorosilane
,”
J. Chem. Soc., Faraday Trans. 2
85
(
6
),
659
(
1989
).
39.
U.
Itoh
,
Y.
Toyoshima
,
H.
Onuki
,
N.
Washida
, and
T.
Ibuki
, “
Vacuum ultraviolet absorption cross sections of SiH4, GeH4, Si2H6, and Si3H8
,”
J. Chem. Phys.
85
(
9
),
4867
4872
(
1986
).
40.
M.
Suto
and
L. C.
Lee
, “
Quantitative photoexcitation study of SiH4 in vacuum ultraviolet
,”
J. Chem. Phys.
84
(
3
),
1160
1164
(
1986
).
41.
M. A.
Dillon
,
D.
Spence
,
L.
Boesten
, and
H.
Tanaka
, “
Electron energy loss spectroscopy of disilane
,”
J. Chem. Phys.
88
(
7
),
4320
4323
(
1988
).
42.
D.
Feller
and
D. A.
Dixon
, “
Theoretical study of the heats of formation of small silicon-containing compounds
,”
J. Phys. Chem. A
103
(
32
),
6413
6419
(
1999
).
43.
R.
Haunschild
and
W.
Klopper
, “
New accurate reference energies for the G2/97 test set
,”
J. Chem. Phys.
136
(
16
),
164102
(
2012
).
44.
J. M. L.
Martin
,
K. K.
Baldridge
, and
T. J.
Lee
, “
Accurate ab initio anharmonic force field and heat of formation for silane
,”
Mol. Phys.
97
(
8
),
945
953
(
1999
).
45.
C. W.
Greeff
and
W. A.
Lester
, Jr.
, “
Quantum Monte Carlo binding energies for silicon hydrides
,”
J. Chem. Phys.
106
(
15
),
6412
6417
(
1997
).
46.
Computational Chemistry Comparison and Benchmark Database, National Institute of Standards and Technology, https://cccbdb.nist.gov/exp1x.asp, accessed 19 July 2020.
47.
D.
Bressanini
,
G.
Morosi
, and
S.
Tarasco
, “
An investigation of nodal structures and the construction of trial wave functions
,”
J. Chem. Phys.
123
(
20
),
204109
(
2005
).
48.
L.
Mitas
, “
Structure of fermion nodes and nodal cells
,”
Phys. Rev. Lett.
96
(
24
),
240402
(
2006
).
49.
D. M.
Ceperley
, “
Fermion nodes
,”
J. Stat. Phys.
63
(
5
),
1237
1267
(
1991
).
50.
M.
Bajdich
and
L.
Mitas
, “
Electronic structure quantum Monte Carlo
,”
Acta Phys. Slov.
59
(
2
),
81
168
(
May 2009
).
51.
M.
Dash
,
J.
Feldt
,
S.
Moroni
,
A.
Scemama
, and
C.
Filippi
, “
Excited states with selected configuration interaction-quantum Monte Carlo: Chemically accurate excitation energies and geometries
,”
J. Chem. Theory Comput.
15
(
9
),
4896
4906
(
2019
).
52.
M.
Dash
,
S.
Moroni
,
A.
Scemama
, and
C.
Filippi
, “
Perturbatively selected configuration-interaction wave functions for efficient geometry optimization in quantum Monte Carlo
,”
J. Chem. Theory Comput.
14
(
8
),
4176
4182
(
2018
).
53.
M.
Caffarel
,
T.
Applencourt
,
E.
Giner
, and
A.
Scemama
, “
Communication: Toward an improved control of the fixed-node error in quantum Monte Carlo: The case of the water molecule
,”
J. Chem. Phys.
144
(
15
),
151103
(
2016
).
54.
M.
Caffarel
,
T.
Applencourt
,
E.
Giner
, and
S.
Anthony
, “
Using CIPSI nodes in diffusion Monte Carlo
,” in
Recent Progress in Quantum Monte Carlo
, ACS Symposium Series Vol. 1234 (
American Chemical Society
,
2016
), Chap. 2, pp.
15
46
.
55.

Future work to be published on Si crystal using QMC.

56.
B.
Blaiszik
,
K.
Chard
,
J.
Pruyne
,
R.
Ananthakrishnan
,
S.
Tuecke
, and
I.
Foster
, “
The materials data facility: Data services to advance materials science research
,”
JOM
68
(
8
),
2045
2052
(
2016
).
57.
B.
Blaiszik
,
L.
Ward
,
M.
Schwarting
,
J.
Gaff
,
R.
Chard
,
D.
Pike
,
K.
Chard
, and
I.
Foster
, “
A data ecosystem to support machine learning in materials science
,”
MRC
9
(
4
),
1125
1133
(
2019
); arXiv: 1904.10423.
58.
G.
Wang
,
A.
Annaberdiyev
, and
L.
Mitas
(
2020
), “
Binding and excitations in SixHy molecular systems using quantum Monte Carlo
,” Dataset. .
You do not currently have access to this content.