Two-dimensional electronic spectroscopy (2DES) can be realized in increasing nonlinear orders of interaction with the electric field, bringing new information about single- and multi-particle properties and dynamics. Furthermore, signals can be detected both coherently (C-2DES) and by fluorescence (F-2DES), with fundamental and practical differences. We directly compare the simultaneous measurements of four- and six-wave mixing C-2DES and F-2DES on an excitonic heterodimer of squaraine molecules. Spectral features are described in increasing orders of nonlinearity by an explicit excitonic model. We demonstrate that the four-wave-mixing spectra are sensitive to one-exciton energies, their delocalization and dynamics, while the six-wave-mixing spectra include information on bi-exciton and higher excited states including the state energies, electronic coupling, and exciton–exciton annihilation. We focus on the possibility to extract the dynamics arising from exciton–exciton interaction directly from the six-wave-mixing spectra. To this end, in analogy to previously demonstrated fifth-order coherently detected exciton–exciton-interaction 2DES (EEI2D spectroscopy), we introduce a sixth-order fluorescence-detected EEI2D spectroscopy variant.

1.
A.
Perri
,
F.
Preda
,
C.
D’Andrea
,
E.
Thyrhaug
,
G.
Cerullo
,
D.
Polli
, and
J.
Hauer
, “
Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer
,”
Opt. Express
25
,
A483
A490
(
2017
).
2.
R.
Berera
,
R.
van Grondelle
, and
J. T. M.
Kennis
, “
Ultrafast transient absorption spectroscopy: Principles and application to photosynthetic systems
,”
Photosynth. Res.
101
,
105
118
(
2009
).
3.
M.
Cho
, “
Coherent two-dimensional optical spectroscopy
,”
Chem. Rev.
108
,
1331
1418
(
2008
).
4.
D.
Polli
,
P.
Altoè
,
O.
Weingart
,
K. M.
Spillane
,
C.
Manzoni
,
D.
Brida
,
G.
Tomasello
,
G.
Orlandi
,
P.
Kukura
,
R. A.
Mathies
,
M.
Garavelli
, and
G.
Cerullo
, “
Conical intersection dynamics of the primary photoisomerization event in vision
,”
Nature
467
,
440
443
(
2010
).
5.
O.
Bixner
,
V.
Lukeš
,
T.
Mančal
,
J.
Hauer
,
F.
Milota
,
M.
Fischer
,
I.
Pugliesi
,
M.
Bradler
,
W.
Schmid
,
E.
Riedle
,
H. F.
Kauffmann
, and
N.
Christensson
, “
Ultrafast photo-induced charge transfer unveiled by two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
136
,
204503
(
2012
).
6.
K. L.
Wells
,
P. H.
Lambrev
,
Z.
Zhang
,
G.
Garab
, and
H.-S.
Tan
, “
Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy
,”
Phys. Chem. Chem. Phys.
16
,
11640
11646
(
2014
).
7.
V.
Butkus
,
J.
Alster
,
E.
Bašinskaitė
,
R.
Augulis
,
P.
Neuhaus
,
L.
Valkunas
,
H. L.
Anderson
,
D.
Abramavicius
, and
D.
Zigmantas
, “
Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring
,”
J. Phys. Chem. Lett.
8
,
2344
2349
(
2017
).
8.
L.
Bruder
,
U.
Bangert
,
M.
Binz
,
D.
Uhl
,
R.
Vexiau
,
N.
Bouloufa-Maafa
,
O.
Dulieu
, and
F.
Stienkemeier
, “
Coherent multidimensional spectroscopy of dilute gas-phase nanosystems
,”
Nat. Commun.
9
,
4823
(
2018
).
9.
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
, “
Two-dimensional spectroscopy of electronic couplings in photosynthesis
,”
Nature
434
,
625
628
(
2005
).
10.
A.
Nemeth
,
V.
Lukeš
,
J.
Sperling
,
F.
Milota
,
H. F.
Kauffmann
, and
T.
Mančal
, “
Two-dimensional electronic spectra of an aggregating dye: Simultaneous measurement of monomeric and dimeric line-shapes
,”
Phys. Chem. Chem. Phys.
11
,
5986
5997
(
2009
).
11.
M.
Schröter
,
T.
Pullerits
, and
O.
Kühn
, “
Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores
,”
J. Chem. Phys.
149
,
114107
(
2018
).
12.
J.
Dostál
,
J.
Pšenčík
, and
D.
Zigmantas
, “
In situ mapping of the energy flow through the entire photosynthetic apparatus
,”
Nat. Chem.
8
,
705
710
(
2016
).
13.
Z.
Zhang
,
P. H.
Lambrev
,
K. L.
Wells
,
G.
Garab
, and
H.-S.
Tan
, “
Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy
,”
Nat. Commun.
6
,
7914
(
2015
).
14.
P.
Akhtar
,
C.
Zhang
,
T. N.
Do
,
G.
Garab
,
P. H.
Lambrev
, and
H.-S.
Tan
, “
Two-dimensional spectroscopy of chlorophyll a excited-state equilibration in light-harvesting complex II
,”
J. Phys. Chem. Lett.
8
,
257
263
(
2017
).
15.
S.
Mueller
,
J.
Lüttig
,
P.
Malý
,
L.
Ji
,
J.
Han
,
M.
Moos
,
T. B.
Marder
,
U. H. F.
Bunz
,
A.
Dreuw
,
C.
Lambert
, and
T.
Brixner
, “
Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways
,”
Nat. Commun.
10
,
4735
(
2019
).
16.
S.
Mueller
and
T.
Brixner
, “
Molecular coherent three-quantum two-dimensional fluorescence spectroscopy
,”
J. Phys. Chem. Lett.
11
,
5139
5147
(
2020
).
17.
J.
Dostál
,
F.
Fennel
,
F.
Koch
,
S.
Herbst
,
F.
Würthner
, and
T.
Brixner
, “
Direct observation of exciton–exciton interactions
,”
Nat. Commun.
9
,
2466
(
2018
).
18.
C.
Heshmatpour
,
J.
Hauer
, and
F.
Šanda
, “
Interplay of exciton annihilation and transport in fifth order electronic spectroscopy
,”
Chem. Phys.
528
,
110433
(
2020
).
19.
H.
Wu
and
M. A.
Berg
, “
Multiple population-period transient spectroscopy (MUPPETS) in excitonic systems
,”
J. Chem. Phys.
138
,
034201
(
2013
).
20.
B.
Brüggemann
and
T.
Pullerits
, “
Nonperturbative modeling of fifth-order coherent multidimensional spectroscopy in light harvesting antennas
,”
New J. Phys.
13
,
025024
(
2011
).
21.
R.
Tempelaar
,
T. L. C.
Jansen
, and
J.
Knoester
, “
Exciton–exciton annihilation is coherently suppressed in H-aggregates, but not in J-aggregates
,”
J. Phys. Chem. Lett.
8
,
6113
6117
(
2017
).
22.
P.
Malý
,
J.
Lüttig
,
A.
Turkin
,
J.
Dostál
,
C.
Lambert
, and
T.
Brixner
, “
From wavelike to sub-diffusive motion: Exciton dynamics and interaction in squaraine copolymers of varying length
,”
Chem. Sci.
11
,
456
466
(
2020
).
23.
B.
Kriete
,
J.
Lüttig
,
T.
Kunsel
,
P.
Malý
,
T. L. C.
Jansen
,
J.
Knoester
,
T.
Brixner
, and
M. S.
Pshenichnikov
, “
Interplay between structural hierarchy and exciton diffusion in artificial light harvesting
,”
Nat. Commun.
10
,
4615
(
2019
).
24.
J. D.
Hybl
,
A.
Albrecht Ferro
, and
D. M.
Jonas
, “
Two-dimensional Fourier transform electronic spectroscopy
,”
J. Chem. Phys.
115
,
6606
(
2001
).
25.
D. M.
Jonas
, “
Two-dimensional femtosecond spectroscopy
,”
Annu. Rev. Phys. Chem.
54
,
425
463
(
2003
).
26.
S.-H.
Shim
and
M. T.
Zanni
, “
How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and VIS spectroscopies via pulse shaping
,”
Phys. Chem. Chem. Phys.
11
,
748
761
(
2009
).
27.
Z.
Zhang
,
K. L.
Wells
,
M. T.
Seidel
, and
H.-S.
Tan
, “
Fifth-order three-dimensional electronic spectroscopy using a pump–probe configuration
,”
J. Phys. Chem. B
117
,
15369
15385
(
2013
).
28.
P.
Tian
,
D.
Keusters
,
Y.
Suzaki
, and
W. S.
Warren
, “
Femtosecond phase-coherent two-dimensional spectroscopy
,”
Science
300
,
1553
1555
(
2003
).
29.
P. F.
Tekavec
,
G. A.
Lott
, and
A. H.
Marcus
, “
Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation
,”
J. Chem. Phys.
127
,
214307
(
2007
).
30.
A. K.
De
,
D.
Monahan
,
J. M.
Dawlaty
, and
G. R.
Fleming
, “
Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling
,”
J. Chem. Phys.
140
,
194201
(
2014
).
31.
S.
Draeger
,
S.
Roeding
, and
T.
Brixner
, “
Rapid-scan coherent 2D fluorescence spectroscopy
,”
Opt. Express
25
,
3259
3267
(
2017
).
32.
V.
Tiwari
,
Y. A.
Matutes
,
A.
Konar
,
Z.
Yu
,
M.
Ptaszek
,
D. F.
Bocian
,
D.
Holten
,
C.
Kirmaier
, and
J. P.
Ogilvie
, “
Strongly coupled bacteriochlorin dyad studied using phase-modulated fluorescence-detected two-dimensional electronic spectroscopy
,”
Opt. Express
26
,
22327
22341
(
2018
).
33.
P.
Malý
and
T.
Mančal
, “
Signatures of exciton delocalization and exciton–exciton annihilation in fluorescence-detected two-dimensional coherent spectroscopy
,”
J. Phys. Chem. Lett.
9
,
5654
5659
(
2018
).
34.
O.
Kühn
,
T.
Mančal
, and
T.
Pullerits
, “
Interpreting fluorescence detected two-dimensional electronic spectroscopy
,”
J. Phys. Chem. Lett.
11
,
838
842
(
2020
).
35.
P.
Malý
,
J.
Lüttig
,
S.
Mueller
,
M. H.
Schreck
,
C.
Lambert
, and
T.
Brixner
, “
Coherently and fluorescence-detected two-dimensional electronic spectroscopy: Direct comparison on squaraine dimers
,”
Phys. Chem. Chem. Phys.
22
,
21222
21237
(
2020
).
36.
T.
Kunsel
,
V.
Tiwari
,
Y. A.
Matutes
,
A. T.
Gardiner
,
R. J.
Cogdell
,
J. P.
Ogilvie
, and
T. L. C.
Jansen
, “
Simulating fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems
,”
J. Phys. Chem. B
123
,
394
406
(
2019
).
37.
V.
Tiwari
,
Y. A.
Matutes
,
A. T.
Gardiner
,
T. L. C.
Jansen
,
R. J.
Cogdell
, and
J. P.
Ogilvie
, “
Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria
,”
Nat. Commun.
9
,
4219
(
2018
).
38.
J.
Süß
,
J.
Wehner
,
J.
Dostál
,
T.
Brixner
, and
V.
Engel
, “
Mapping of exciton–exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy
,”
J. Chem. Phys.
150
,
104304
(
2019
).
39.
M.
Binz
,
L.
Bruder
,
L.
Chen
,
M. F.
Gelin
,
W.
Domcke
, and
F.
Stienkemeier
, “
Effects of high pulse intensity and chirp in two-dimensional electronic spectroscopy
,”
Opt. Express
28
,
25806
25829
(
2020
).
40.
L.
Valkunas
,
D.
Abramavicius
, and
T.
Mančal
,
Molecular Excitation Dynamics and Relaxation
(
Wiley VCH
,
2013
).
41.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
1995
).
42.
A.
Perdomo-Ortiz
,
J. R.
Widom
,
G. A.
Lott
,
A.
Aspuru-Guzik
, and
A. H.
Marcus
, “
Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy
,”
J. Phys. Chem. B
116
,
10757
10770
(
2012
).
43.
P.
Malevich
,
C.
Heshmatpour
,
C. N.
Lincoln
,
H.
Ceymann
,
M. H.
Schreck
, and
J.
Hauer
, “
Ultrafast bi-excitonic dynamics and annihilation in molecular and mesoscopic systems
,”
EPJ Web Conf.
205
,
06013
(
2019
).
44.
A.
Nemeth
,
F.
Milota
,
T.
Mančal
,
T.
Pullerits
,
J.
Sperling
,
J.
Hauer
,
H. F.
Kauffmann
, and
N.
Christensson
, “
Double-quantum two-dimensional electronic spectroscopy of a three-level system: Experiments and simulations
,”
J. Chem. Phys.
133
,
094505
(
2010
).
45.
T.
Brixner
,
T.
Mančal
,
I. V.
Stiopkin
, and
G. R.
Fleming
, “
Phase-stabilized two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
121
,
4221
4236
(
2004
).
46.
H.-S.
Tan
, “
Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy
,”
J. Chem. Phys.
129
,
124501
(
2008
).
47.
M. I. S.
Röhr
,
H.
Marciniak
,
J.
Hoche
,
M. H.
Schreck
,
H.
Ceymann
,
R.
Mitric
, and
C.
Lambert
, “
Exciton dynamics from strong to weak coupling limit illustrated on a series of squaraine dimers
,”
J. Phys. Chem. C
122
,
8082
8093
(
2018
).
48.
M.
Schreck
, “
Synthesis and photphysics of linear and star-shaped oligomers of squaraine dyes
,” Ph.D. thesis (
University of Würzburg
,
2018
).
49.
C.
Lambert
,
F.
Koch
,
S. F.
Völker
,
A.
Schmiedel
,
M.
Holzapfel
,
A.
Humeniuk
,
M. I. S.
Röhr
,
R.
Mitric
, and
T.
Brixner
, “
Energy transfer between squaraine polymer sections: From helix to zigzag and all the way back
,”
J. Am. Chem. Soc.
137
,
7851
7861
(
2015
).
50.
I. A.
Heisler
,
R.
Moca
,
F. V. A.
Camargo
, and
S. R.
Meech
, “
Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition
,”
Rev. Sci. Instrum.
85
,
063103
(
2014
).
51.
D.
Paleček
,
P.
Edlund
,
E.
Gustavsson
,
S.
Westenhoff
, and
D.
Zigmantas
, “
Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
151
,
024201
(
2019
).
52.
K. J.
Karki
,
J.
Chen
,
A.
Sakurai
,
Q.
Shi
,
A. T.
Gardiner
,
O.
Kühn
,
R. J.
Cogdell
, and
T.
Pullerits
, “
Before Förster. Initial excitation in photosynthetic light harvesting
,”
Chem. Sci.
10
,
7923
7928
(
2019
).
53.
P. F.
Tekavec
,
J. A.
Myers
,
K. L. M.
Lewis
,
F. D.
Fuller
, and
J. P.
Ogilvie
, “
Effects of chirp on two-dimensional Fourier transform electronic spectra
,”
Opt. Express
18
,
11015
11024
(
2010
).
54.
R.
Tempelaar
,
A.
Halpin
,
P. J. M.
Johnson
,
J.
Cai
,
R. S.
Murphy
,
J.
Knoester
,
R. J. D.
Miller
, and
T. L. C.
Jansen
, “
Laser-limited signatures of quantum coherence
,”
J. Phys. Chem. A
120
,
3042
3048
(
2016
).
55.
L.
Bruder
,
A.
Eisfeld
,
U.
Bangert
,
M.
Binz
,
M.
Jakob
,
D.
Uhl
,
M.
Schulz-Weiling
,
E. R.
Grant
, and
F.
Stienkemeier
, “
Delocalized excitons and interaction effects in extremely dilute thermal ensembles
,”
Phys. Chem. Chem. Phys.
21
,
2276
2282
(
2019
).
56.
C.
Heshmatpour
,
P.
Malevich
,
F.
Plasser
,
M.
Menger
,
C.
Lambert
,
F.
Šanda
, and
J.
Hauer
, “
Annihilation dynamics of molecular excitons measured at a single perturbative excitation energy
,”
J. Phys. Chem. Lett.
11
,
7776
7781
(
2020
).
57.
A.
Volpato
,
L.
Bolzonello
,
E.
Meneghin
, and
E.
Collini
, “
Global analysis of coherence and population dynamics in 2D electronic spectroscopy
,”
Opt. Express
24
,
24773
24785
(
2016
).
58.
F. D.
Fuller
,
J.
Pan
,
A.
Gelzinis
,
V.
Butkus
,
S. S.
Senlik
,
D. E.
Wilcox
,
C. F.
Yocum
,
L.
Valkunas
,
D.
Abramavicius
, and
J. P.
Ogilvie
, “
Vibronic coherence in oxygenic photosynthesis
,”
Nat. Chem.
6
,
706
711
(
2014
).
59.
E.
Romero
,
R.
Augulis
,
V. I.
Novoderezhkin
,
M.
Ferretti
,
J.
Thieme
,
D.
Zigmantas
, and
R.
van Grondelle
, “
Quantum coherence in photosynthesis for efficient solar-energy conversion
,”
Nat. Phys.
10
,
676
682
(
2014
).
60.
J.
Prior
,
E.
Castro
,
A. W.
Chin
,
J.
Almeida
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Wavelet analysis of molecular dynamics: Efficient extraction of time-frequency information in ultrafast optical processes
,”
J. Chem. Phys.
139
,
224103
(
2013
).
61.
J.
Olšina
and
T.
Mančal
, “
Parametric projection operator technique for second order non-linear response
,”
Chem. Phys.
404
,
103
115
(
2012
).

Supplementary Material

You do not currently have access to this content.