Unambiguous information about spatiotemporal exciton dynamics in three-dimensional nanometer- to micrometer-sized organic structures is difficult to obtain experimentally. Exciton dynamics can be modified by annihilation processes, and different light propagation mechanisms can take place, such as active waveguiding and photon recycling. Since these various processes and mechanisms can lead to similar spectroscopic and microscopic signatures on comparable time scales, their discrimination is highly demanding. Here, we study individual organic single crystals grown from thiophene-based oligomers. We use time-resolved detection-beam scanning microscopy to excite a local singlet exciton population and monitor the subsequent broadening of the photoluminescence (PL) signal in space and on pico- to nanosecond time scales. Combined with Monte Carlo simulations, we were able to exclude photon recycling for our system, whereas leakage radiation upon active waveguiding leads to an apparent PL broadening of about 20% compared to the initial excitation profile. Exciton–exciton annihilation becomes important at high excitation fluence and apparently accelerates the exciton dynamics leading to apparently increased diffusion lengths. At low excitation fluences, the spatiotemporal PL broadening results from singlet exciton diffusion with diffusion lengths of up to 210 nm. Surprisingly, even in structurally highly ordered single crystals, the transport dynamics is subdiffusive and shows variations between different crystals, which we relate to varying degrees of static and dynamic electronic disorders.

1.
C.
Zhang
,
Y.
Yan
,
Y. S.
Zhao
, and
J.
Yao
,
Acc. Chem. Res.
47
,
3448
(
2014
).
2.
S. M.
Menke
and
R. J.
Holmes
,
Energy Environ. Sci.
7
,
499
(
2014
).
3.
O. V.
Mikhnenko
,
P. W. M.
Blom
, and
T.-Q.
Nguyen
,
Energy Environ. Sci.
8
,
1867
(
2015
).
4.
H.
Paul
,
C.
David
, and
B. P.
Rand
,
Acc. Chem. Res.
42
,
1740
(
2009
).
5.
Q. H.
Cui
,
Q.
Peng
,
Y.
Luo
,
Y.
Jiang
,
Y.
Yan
,
C.
Wei
,
Z.
Shuai
,
C.
Sun
,
J.
Yao
, and
Y. S.
Zhao
,
Sci. Adv.
4
,
eaap9861
(
2018
).
6.
M. P.
Zhuo
,
J. J.
Wu
,
X. D.
Wang
,
Y. C.
Tao
,
Y.
Yuan
, and
L. S.
Liao
,
Nat. Commun.
10
,
3839
(
2019
).
8.
M.-J.
Sun
,
Y.
Liu
,
Y.
Yan
,
R.
Li
,
Q.
Shi
,
Y. S.
Zhao
,
Y.-W.
Zhong
, and
J.
Yao
,
J. Am. Chem. Soc.
140
,
4269
(
2018
).
9.
G. B.
Piland
and
C. J.
Bardeen
,
J. Phys. Chem. Lett.
6
,
1841
(
2015
).
10.
11.
J.
Gierschner
and
S. Y.
Park
,
J. Mater. Chem. C
1
,
5818
(
2013
).
12.
J.
Gierschner
,
L.
Lüer
,
B.
Milián-Medina
,
D.
Oelkrug
, and
H.-J.
Egelhaaf
,
J. Phys. Chem. Lett.
4
,
2686
(
2013
).
13.
S.
Motamen
,
D.
Raithel
,
R.
Hildner
,
K.
Rahimi
,
T.
Jarrosson
,
F.
Serein-Spirau
,
L.
Simon
, and
G.
Reiter
,
ACS Photonics
3
,
2315
(
2016
).
14.
S. M.
Vlaming
,
V. A.
Malyshev
,
A.
Eisfeld
, and
J.
Knoester
,
J. Chem. Phys.
138
,
214316
(
2013
).
15.
J. M.
Moix
,
M.
Khasin
, and
J.
Cao
,
New J. Phys.
15
,
085010
(
2013
).
16.
J. R.
Caram
,
S.
Doria
,
D. M.
Eisele
,
F. S.
Freyria
,
T. S.
Sinclair
,
P.
Rebentrost
,
S.
Lloyd
, and
M. G.
Bawendi
,
Nano Lett.
16
,
6808
(
2016
).
17.
J.-L.
Brédas
,
E. H.
Sargent
, and
G. D.
Scholes
,
Nat. Mater.
16
,
35
(
2016
).
18.
F.
Fassioli
,
R.
Dinshaw
,
P. C.
Arpin
, and
G. D.
Scholes
,
J. R. Soc., Interface
11
,
20130901
(
2014
).
19.
T.
Zhu
,
Y.
Wan
, and
L.
Huang
,
Acc. Chem. Res.
50
,
1725
(
2017
).
20.
N. S.
Ginsberg
and
W. A.
Tisdale
,
Annu. Rev. Phys. Chem.
71
,
1
(
2020
).
21.
E. M.
Grumstrup
,
Opt. Express
27
,
31385
(
2019
).
22.
S.
Motamen
,
C.
Schörner
,
D.
Raithel
,
J.-P.
Malval
,
T.
Jarrosson
,
F.
Serein-Spirau
,
L.
Simon
,
R.
Hildner
, and
G.
Reiter
,
Phys. Chem. Chem. Phys.
19
,
15980
(
2017
).
23.
C.
Schörner
,
C.
Neuber
, and
R.
Hildner
,
APL Photonics
4
,
016104
(
2019
).
24.
C.
Schörner
,
S.
Motamen
,
L.
Simon
,
G.
Reiter
, and
R.
Hildner
,
ACS Omega
3
,
6728
(
2018
).
25.
Y.
Fang
,
H.
Wei
,
Q.
Dong
, and
J.
Huang
,
Nat. Commun.
8
,
14417
(
2017
).
26.
I.
Dursun
,
Y.
Zheng
,
T.
Guo
,
M.
De Bastiani
,
B.
Turedi
,
L.
Sinatra
,
M. A.
Haque
,
B.
Sun
,
A. A.
Zhumekenov
,
M. I.
Saidaminov
,
F. P.
García de Arquer
,
E. H.
Sargent
,
T.
Wu
,
Y. N.
Gartstein
,
O. M.
Bakr
,
O. F.
Mohammed
, and
A. V.
Malko
,
ACS Energy Lett.
3
,
1492
(
2018
).
27.
J. D. A.
Lin
,
O. V.
Mikhnenko
,
J.
Chen
,
Z.
Masri
,
A.
Ruseckas
,
A.
Mikhailovsky
,
R. P.
Raab
,
J.
Liu
,
P. W. M.
Blom
,
M. A.
Loi
,
C. J.
García-Cervera
,
I. D. W.
Samuel
, and
T.-Q.
Nguyen
,
Mater. Horizons
1
,
280
(
2014
).
28.
A. K.
Topczak
,
T.
Roller
,
B.
Engels
,
W.
Brütting
, and
J.
Pflaum
,
Phys. Rev. B
89
,
201203
(
2014
).
29.
X.-H.
Jin
,
M. B.
Price
,
J. R.
Finnegan
,
C. E.
Boott
,
J. M.
Richter
,
A.
Rao
,
S. M.
Menke
,
R. H.
Friend
,
G. R.
Whittell
, and
I.
Manners
,
Science
360
,
897
(
2018
).
30.
A. A.
Mannanov
,
M. S.
Kazantsev
,
A. D.
Kuimov
,
V. G.
Konstantinov
,
D. I.
Dominskiy
,
V. A.
Trukhanov
,
D. S.
Anisimov
,
N. V.
Gultikov
,
V. V.
Bruevich
,
I. P.
Koskin
,
A. A.
Sonina
,
T. V.
Rybalova
,
I. K.
Shundrina
,
E. A.
Mostovich
,
D. Y.
Paraschuk
, and
M. S.
Pshenichnikov
,
J. Mater. Chem. C
7
,
60
(
2019
).
31.
K. A.
Clark
,
E. L.
Krueger
, and
D. A.
Vanden Bout
,
J. Phys. Chem. Lett.
5
,
2274
(
2014
).
32.
A. T.
Haedler
,
K.
Kreger
,
A.
Issac
,
B.
Wittmann
,
M.
Kivala
,
N.
Hammer
,
J.
Köhler
,
H.-W.
Schmidt
, and
R.
Hildner
,
Nature
523
,
196
(
2015
).
33.
P.
Irkhin
and
I.
Biaggio
,
Phys. Rev. Lett.
107
,
017402
(
2011
).
34.
P.
Avakian
and
R. E.
Merrifield
,
Phys. Rev. Lett.
13
,
541
(
1964
).
35.
K.
Narushima
,
S.
Hirata
, and
M.
Vacha
,
Nanoscale
9
,
10653
(
2017
).
36.
G. M.
Akselrod
,
P. B.
Deotare
,
N. J.
Thompson
,
J.
Lee
,
W. A.
Tisdale
,
M. A.
Baldo
,
V. M.
Menon
, and
V.
Bulovic
,
Nat. Commun.
5
,
3646
(
2014
).
37.
B.
Wittmann
,
F. A.
Wenzel
,
S.
Wiesneth
,
A. T.
Haedler
,
M.
Drechsler
,
K.
Kreger
,
J.
Köhler
,
E. W.
Meijer
,
H.-W.
Schmidt
, and
R.
Hildner
,
J. Am. Chem. Soc.
142
,
8323
(
2020
).
38.
C.
Schnedermann
,
J.
Sung
,
R.
Pandya
,
S. D.
Verma
,
R. Y. S.
Chen
,
N.
Gauriot
,
H. M.
Bretscher
,
P.
Kukura
, and
A.
Rao
,
J. Phys. Chem. Lett.
10
,
6727
(
2019
).
39.
R.
Pandya
,
R. Y. S.
Chen
,
Q.
Gu
,
J.
Gorman
,
F.
Auras
,
J.
Sung
,
R.
Friend
,
P.
Kukura
,
C.
Schnedermann
, and
A.
Rao
,
J. Phys. Chem. A
124
,
2721
(
2020
).
40.
M.
Narayanan Nair
,
N.
Hobeika
,
F.
Calard
,
J.-P.
Malval
,
S.
Aloïse
,
A.
Spangenberg
,
L.
Simon
,
M.
Cranney
,
F.
Vonau
,
D.
Aubel
,
F.
Serein-Spirau
,
J.-P.
Lère-Porte
,
M.-A.
Lacour
, and
T.
Jarrosson
,
Phys. Chem. Chem. Phys.
16
,
12826
(
2014
).
41.
G. M.
Akselrod
,
F.
Prins
,
L. V.
Poulikakos
,
E. M. Y.
Lee
,
M. C.
Weidman
,
A. J.
Mork
,
A. P.
Willard
,
V.
Bulović
, and
W. A.
Tisdale
,
Nano Lett.
14
,
3556
(
2014
).
42.
R. P.
Fornari
,
J.
Aragó
, and
A.
Troisi
,
J. Phys. Chem. C
120
,
7987
(
2016
).
43.
J.
Wu
and
K. M.
Berland
,
Biophys. J.
95
,
2049
(
2008
).
44.
S.
Havlin
and
D.
Ben-Avraham
,
Adv. Phys.
51
,
187
(
2002
).
45.
R.
Kersting
,
U.
Lemmer
,
R. F.
Mahrt
,
K.
Leo
,
H.
Kurz
,
H.
Bässler
, and
E. O.
Göbel
,
Phys. Rev. Lett.
70
,
3820
(
1993
).
46.
R.
Hildner
,
U.
Lemmer
,
U.
Scherf
, and
J.
Köhler
,
Chem. Phys. Lett.
429
,
103
(
2006
).
47.
G. R.
Hayes
,
I. D. W.
Samuel
, and
R. T.
Phillips
,
Phys. Rev. B
52
,
R11569(R)
(
1995
).
48.
J.
Aragó
and
A.
Troisi
,
Phys. Rev. Lett.
114
,
026402
(
2015
).
49.
J.
Aragó
and
A.
Troisi
,
Adv. Funct. Mater.
26
,
2316
(
2016
).
50.
S.
Deng
,
E.
Shi
,
L.
Yuan
,
L.
Jin
,
L.
Dou
, and
L.
Huang
,
Nat. Commun.
11
,
664
(
2020
).
51.
Y.
Wan
,
Z.
Guo
,
T.
Zhu
,
S.
Yan
,
J.
Johnson
, and
L.
Huang
,
Nat. Chem.
7
,
785
(
2015
).
52.
F.
Panzer
,
M.
Sommer
,
H.
Bässler
,
M.
Thelakkat
, and
A.
Köhler
,
Macromolecules
48
,
1543
(
2015
).
53.
R.
Hildner
,
L.
Winterling
,
U.
Lemmer
,
U.
Scherf
, and
J.
Köhler
,
ChemPhysChem
10
,
2524
(
2009
).

Supplementary Material

You do not currently have access to this content.