Alchemical perturbation density functional theory has been shown to be an efficient and computationally inexpensive way to explore chemical compound space. We investigate approximations made, in terms of atomic basis sets and the perturbation order, introduce an electron-density based estimate of errors of the alchemical prediction, and propose a correction for effects due to basis set incompleteness. Our numerical analysis of potential energy estimates, and resulting binding curves, is based on coupled-cluster single double (CCSD) reference results and is limited to all neutral diatomics with 14 electrons (AlH⋯NN). The method predicts binding energy, equilibrium distance, and vibrational frequencies of neighboring out-of-sample diatomics with near CCSD quality using perturbations up to the fifth order. We also discuss simultaneous alchemical mutations at multiple sites in benzene.

1.
P.
Kirkpatrick
and
C.
Ellis
, “
Chemical space
,”
Nature
432
,
823
(
2004
).
2.
A.
Mullard
, “
The drug-maker’s guide to the galaxy
,”
Nature
549
,
445
447
(
2017
).
3.
O. A.
von Lilienfeld
, “
First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties
,”
Int. J. Quantum Chem.
113
,
1676
1689
(
2013
).
4.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
5.
O. A.
von Lilienfeld
, “
Quantum machine learning in chemical compound space
,”
Angew. Chem., Int. Ed.
57
,
4164
4169
(
2018
).
6.
G.
Pilania
,
C.
Wang
,
X.
Jiang
,
S.
Rajasekaran
, and
R.
Ramprasad
, “
Accelerating materials property predictions using machine learning
,”
Sci. Rep.
3
,
2810
(
2013
).
7.
B.
Meredig
,
A.
Agrawal
,
S.
Kirklin
,
J. E.
Saal
,
J.
Doak
,
A.
Thompson
,
K.
Zhang
,
A.
Choudhary
, and
C.
Wolverton
, “
Combinatorial screening for new materials in unconstrained composition space with machine learning
,”
Phys. Rev. B
89
,
094104
(
2014
).
8.
K. T.
Schütt
,
H.
Glawe
,
F.
Brockherde
,
A.
Sanna
,
K.-R.
Müller
, and
E. K.
Gross
, “
How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
,”
Phys. Rev. B
89
,
205118
(
2014
).
9.
F. A.
Faber
,
A.
Lindmaa
,
O. A.
von Lilienfeld
, and
R.
Armiento
, “
Machine learning energies of 2 million elpasolite (ABC2D6) crystals
,”
Phys. Rev. Lett.
117
,
135502
(
2016
).
10.
F. A.
Faber
,
L.
Hutchison
,
B.
Huang
,
J.
Gilmer
,
S. S.
Schoenholz
,
G. E.
Dahl
,
O.
Vinyals
,
S.
Kearnes
,
P. F.
Riley
, and
O. A.
von Lilienfeld
, “
Prediction errors of molecular machine learning models lower than hybrid DFT error
,”
J. Chem. Theory Comput.
13
,
5255
5264
(
2017
).
11.
F. A.
Faber
,
A. S.
Christensen
,
B.
Huang
, and
O. A.
von Lilienfeld
, “
Alchemical and structural distribution based representation for universal quantum machine learning
,”
J. Chem. Phys.
148
,
241717
(
2018
).
12.
O. A.
von Lilienfeld
, “
Accurate ab initio energy gradients in chemical compound space
,”
J. Chem. Phys.
131
,
164102
(
2009
).
13.
K. Y. S.
Chang
and
O. A.
von Lilienfeld
, “
AlxGa1−xAs crystals with direct 2 eV band gaps from computational alchemy
,”
Phys. Rev. Mater.
2
,
073802
(
2018
).
14.
R.
Balawender
,
M. A.
Welearegay
,
M.
Lesiuk
,
F.
De Proft
, and
P.
Geerlings
, “
Exploring chemical space with the alchemical derivatives
,”
J. Chem. Theory Comput.
9
,
5327
5340
(
2013
).
15.
Y. S.
Al-Hamdani
,
A.
Michaelides
, and
O. A.
von Lilienfeld
, “
Exploring dissociative water adsorption on isoelectronically BN doped graphene using alchemical derivatives
,”
J. Chem. Phys.
147
,
164113
(
2017
).
16.
R.
Balawender
,
M.
Lesiuk
,
F.
De Proft
, and
P.
Geerlings
, “
Exploring chemical space with alchemical derivatives: BN-simultaneous substitution patterns in C60
,”
J. Chem. Theory Comput.
14
,
1154
1168
(
2018
).
17.
G. F.
von Rudorff
and
O. A.
von Lilienfeld
, “
Alchemical perturbation density functional theory
,”
Phys. Rev. Res.
2
,
023220
(
2020
).
18.
G. F.
von Rudorff
and
O. A.
von Lilienfeld
, “
Atoms in molecules from alchemical perturbation density functional theory
,”
J. Phys. Chem. B
123
,
10073
(
2019
).
19.
G. F.
von Rudorff
and
O. A.
von Lilienfeld
, “
Rapid and accurate molecular deprotonation energies from quantum alchemy
,”
Phys. Chem. Chem. Phys.
22
,
10519
(
2020
).
20.
M.
Muñoz
,
A.
Robles-Navarro
,
P.
Fuentealba
, and
C.
Cárdenas
, “
Predicting deprotonation sites using alchemical derivatives
,”
J. Phys. Chem. A
124
,
3754
3760
(
2020
).
21.
N.
Marzari
,
S.
de Gironcoli
, and
S.
Baroni
, “
Structure and phase stability of GaxIn1−xP solid solutions from computational alchemy
,”
Phys. Rev. Lett.
72
,
4001
4004
(
1994
).
22.
D.
Sheppard
,
G.
Henkelman
, and
O. A.
von Lilienfeld
, “
Alchemical derivatives of reaction energetics
,”
J. Chem. Phys.
133
,
084104
(
2010
).
23.
A.
Solovyeva
and
O. A.
von Lilienfeld
, “
Alchemical screening of ionic crystals
,”
Phys. Chem. Chem. Phys.
18
,
31078
31091
(
2016
).
24.
K.
Saravanan
,
J. R.
Kitchin
,
O. A.
von Lilienfeld
, and
J. A.
Keith
, “
Alchemical predictions for computational catalysis: Potential and limitations
,”
J. Phys. Chem. Lett.
8
,
5002
5007
(
2017
).
25.
C. D.
Griego
,
K.
Saravanan
, and
J. A.
Keith
, “
Benchmarking computational alchemy for carbide, nitride, and oxide catalysts
,”
Adv. Theory Simul.
2
,
1800142
(
2019
).
26.
C. D.
Griego
,
J. R.
Kitchin
, and
J. A.
Keith
, “
Acceleration of catalyst discovery with easy, fast, and reproducible computational alchemy
,”
Int. J. Quantum Chem.
,
e26380
(
2020
).
27.
J.
Čížek
, “
On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods
,”
J. Chem. Phys.
45
,
4256
4266
(
1966
).
28.
O.
Sinanoǧlu
, “
Many-electron theory of atoms and molecules. I. Shells, electron pairs vs many-electron correlations
,”
J. Chem. Phys.
36
,
706
717
(
1962
).
29.
M.
Kállay
and
P. R.
Surján
, “
Higher excitations in coupled-cluster theory
,”
J. Chem. Phys.
115
,
2945
2954
(
2001
).
30.
D. R.
Hartree
and
W.
Hartree
, “
Self-consistent field, with exchange, for beryllium
,”
Proc. R. Soc. London, Ser. A
150
,
9
33
(
1935
).
31.
J. C.
Slater
, “
A simplification of the Hartree–Fock method
,”
Phys. Rev.
81
,
385
(
1951
).
32.
C.
Møller
and
M. S.
Plesset
, “
Note on an approximation treatment for many-electron systems
,”
Phys. Rev.
46
,
618
622
(
1934
).
33.
A. D.
Becke
, “
A new mixing of Hartree–Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
34.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
(
1988
).
35.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
,
1200
1211
(
1980
).
36.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
37.
E. B.
Wilson
, “
Four-dimensional electron density function
,”
J. Chem. Phys.
36
,
2232
2233
(
1962
).
38.
M.
Levy
, “
An energy-density equation for isoelectronic changes in atoms
,”
J. Chem. Phys.
68
,
5298
5299
(
1978
).
39.
S.
Fias
,
K. Y. S.
Chang
, and
O. A.
von Lilienfeld
, “
Alchemical normal modes unify chemical space
,”
J. Phys. Chem. Lett.
10
,
30
39
(
2019
).
40.
O. A.
von Lilienfeld
and
M. E.
Tuckerman
, “
Molecular grand-canonical ensemble density functional theory and exploration of chemical space
,”
J. Chem. Phys.
125
,
154104
(
2006
).
41.
V.
Marcon
,
O. A.
von Lilienfeld
, and
D.
Andrienko
, “
Tuning electronic eigenvalues of benzene via doping
,”
J. Chem. Phys.
127
,
064305
(
2007
).
42.
M.
Muñoz
and
C.
Cárdenas
, “
How predictive could alchemical derivatives be?
,”
Phys. Chem. Chem. Phys.
19
,
16003
16012
(
2017
).
43.
R.
Balawender
,
M.
Lesiuk
,
F.
De Proft
,
C.
Van Alsenoy
, and
P.
Geerlings
, “
Exploring chemical space with alchemical derivatives: Alchemical transformations of H through Ar and their ions as a proof of concept
,”
Phys. Chem. Chem. Phys.
21
,
23865
23879
(
2019
).
44.
R. P.
Feynman
, “
Forces in molecules
,”
Phys. Rev.
56
,
340
343
(
1939
).
45.
B.
Fornberg
, “
Generation of finite difference formulas on arbitrarily spaced grids
,”
Math. Comput.
51
,
699
706
(
1988
).
46.
M.
Lesiuk
,
R.
Balawender
, and
J.
Zachara
, “
Higher order alchemical derivatives from coupled perturbed self-consistent field theory
,”
J. Chem. Phys.
136
,
034104
(
2012
).
47.
E. V. R.
de Castro
and
F. E.
Jorge
, “
Accurate universal Gaussian basis set for all atoms of the periodic table
,”
J. Chem. Phys.
108
,
5225
5229
(
1998
).
48.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
49.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
50.
W. J.
Hehre
,
R. F.
Stewart
, and
J. A.
Pople
, “
Self consistent molecular orbital methods. I. Use of Gaussian expansions of slater type atomic orbitals
,”
J. Chem. Phys.
51
,
2657
2664
(
1969
).
51.
J. S.
Binkley
,
J. A.
Pople
, and
W. J.
Hehre
, “
Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements
,”
J. Am. Chem. Soc.
102
,
939
947
(
1980
).
52.
M. M.
Francl
,
W. J.
Pietro
,
W. J.
Hehre
,
J. S.
Binkley
,
M. S.
Gordon
,
D. J.
DeFrees
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements
,”
J. Chem. Phys.
77
,
3654
3665
(
1982
).
53.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
54.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
,”
J. Chem. Phys.
98
,
1358
1371
(
1993
).
55.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
, “
Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr
,”
J. Chem. Phys.
100
,
5829
5835
(
1994
).
56.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
, “
Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr
,”
J. Chem. Phys.
119
,
12753
12762
(
2003
).
57.
G.
Domenichini
,
G. F.
von Rudorff
, and
O. A.
von Lilienfeld
(
2020
). “
Dataset for alchemical transmutation on 14 electron diatomics
,” Zenodo.
58.
M.
Kállay
,
P. R.
Nagy
,
Z.
Rolik
,
D.
Mester
,
G.
Samu
,
J.
Csontos
,
J.
Csóka
,
B. P.
Szabó
,
L.
Gyevi-Nagy
,
I.
Ladjánszki
,
L.
Szegedy
,
B.
Ladóczki
,
K.
Petrov
,
M.
Farkas
,
P. D.
Mezei
, and
B.
Hégely
, MRCC, a quantum chemical program suite at www.mrcc.hu,
2017
.
59.
Z.
Rolik
,
L.
Szegedy
,
I.
Ladjánszki
,
B.
Ladóczki
, and
M.
Kállay
, “
An efficient linear-scaling CCSD(T) method based on local natural orbitals
,”
J. Chem. Phys.
139
,
094105
(
2013
).
60.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
61.
S. F.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
,
553
566
(
1970
).
62.
K. Y. S.
Chang
,
S.
Fias
,
R.
Ramakrishnan
, and
O. A.
von Lilienfeld
, “
Fast and accurate predictions of covalent bonds in chemical space
,”
J. Chem. Phys.
144
,
174110
(
2016
).

Supplementary Material

You do not currently have access to this content.