Explicit description of atomic polarizability is critical for the accurate treatment of inter-molecular interactions by force fields (FFs) in molecular dynamics (MD) simulations aiming to investigate complex electrostatic environments such as metal-binding sites of metalloproteins. Several models exist to describe key monovalent and divalent cations interacting with proteins. Many of these models have been developed from ion–amino-acid interactions and/or aqueous-phase data on cation solvation. The transferability of these models to cation–protein interactions remains uncertain. Herein, we assess the accuracy of existing FFs by their abilities to reproduce hierarchies of thousands of Ca2+–dipeptide interaction energies based on density-functional theory calculations. We find that the Drude polarizable FF, prior to any parameterization, better approximates the QM interaction energies than any of the non-polarizable FFs. Nevertheless, it required improvement in order to address polarization catastrophes where, at short Ca2+–carboxylate distances, the Drude particle of oxygen overlaps with the divalent cation. To ameliorate this, we identified those conformational properties that produced the poorest prediction of interaction energies to reduce the parameter space for optimization. We then optimized the selected cation–peptide parameters using Boltzmann-weighted fitting and evaluated the resulting parameters in MD simulations of the N-lobe of calmodulin. We also parameterized and evaluated the CTPOL FF, which incorporates charge-transfer and polarization effects in additive FFs. This work shows how QM-driven parameter development, followed by testing in condensed-phase simulations, may yield FFs that can accurately capture the structure and dynamics of ion–protein interactions.

1.
D. J.
Huggins
,
P. C.
Biggin
,
M. A.
Dämgen
,
J. W.
Essex
,
S. A.
Harris
,
R. H.
Henchman
,
S.
Khalid
,
A.
Kuzmanic
,
C. A.
Laughton
,
J.
Michel
,
A. J.
Mulholland
,
E.
Rosta
,
M. S. P.
Sansom
, and
M. W.
van der Kamp
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
(
3
),
e1393
(
2019
).
2.
R. O.
Dror
,
R. M.
Dirks
,
J. P.
Grossman
,
H.
Xu
, and
D. E.
Shaw
,
Annu. Rev. Biophys.
41
,
429
452
(
2012
).
3.
J. A.
Lemkul
,
J.
Huang
,
B.
Roux
, and
A. D.
MacKerell
,
Chem. Rev.
116
(
9
),
4983
5013
(
2016
).
4.
J.
Huang
,
S.
Rauscher
,
G.
Nawrocki
,
T.
Ran
,
M.
Feig
,
B. L.
de Groot
,
H.
Grubmüller
, and
A. D.
MacKerell
, Jr.
,
Nat. Methods
14
(
1
),
71
73
(
2017
).
5.
E.
Flood
,
C.
Boiteux
,
B.
Lev
,
I.
Vorobyov
, and
T. W.
Allen
,
Chem. Rev.
119
(
13
),
7737
7832
(
2019
).
6.
Z. F.
Jing
,
C. W.
Liu
,
S. Y.
Cheng
,
R.
Qi
,
B. D.
Walker
,
J. P.
Piquemal
, and
P. Y.
Ren
,
Annu. Rev. Biophys.
48
,
371
394
(
2019
).
7.
R.
Salomon-Ferrer
,
D. A.
Case
, and
R. C.
Walker
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
(
2
),
198
210
(
2013
).
8.
M. M.
Reif
,
P. H.
Hünenberger
, and
C.
Oostenbrink
,
J. Chem. Theory Comput.
8
(
10
),
3705
3723
(
2012
).
9.
G. A.
Kaminski
,
R. A.
Friesner
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
,
J. Phys. Chem. B
105
(
28
),
6474
6487
(
2001
).
10.
H.
Li
,
V.
Ngo
,
M. C.
Da Silva
,
D. R.
Salahub
,
K.
Callahan
,
B.
Roux
, and
S. Y.
Noskov
,
J. Phys. Chem. B
119
,
9401
9416
(
2015
).
11.
V.
Ngo
,
M. C.
da Silva
,
M.
Kubillus
,
H.
Li
,
B.
Roux
,
M.
Elstner
,
Q.
Cui
,
D. R.
Salahub
, and
S. Y.
Noskov
,
J. Chem. Theory Comput.
11
(
10
),
4992
5001
(
2015
).
12.
X. D.
Peng
,
Y. B.
Zhang
,
H. Y.
Chu
,
Y.
Li
,
D. L.
Zhang
,
L. R.
Cao
, and
G. H.
Li
,
J. Chem. Theory Comput.
12
(
6
),
2973
2982
(
2016
).
13.
H.
MacDermott-Opeskin
,
C. A.
McDevitt
, and
M. L.
O’Mara
,
J. Chem. Theory Comput.
16
(
3
),
1913
1923
(
2020
).
14.
J.
Yoo
and
A.
Aksimentiev
,
Phys. Chem. Chem. Phys.
20
(
13
),
8432
8449
(
2018
).
15.
T.
Dudev
and
C.
Lim
,
Chem. Rev.
114
(
1
),
538
556
(
2014
).
16.
P.
Li
and
K. M.
Merz
,
Chem. Rev.
117
(
3
),
1564
1686
(
2017
).
17.
E.
Duboué-Dijon
,
M.
Javanainen
,
P.
Delcroix
,
P.
Jungwirth
, and
H.
Martinez-Seara
,
J. Chem. Phys.
153
(
5
),
050901
(
2020
).
18.
M.
Kohagen
,
M.
Lepšík
, and
P.
Jungwirth
,
J. Phys. Chem. Lett.
5
(
22
),
3964
3969
(
2014
).
19.
E.
Duboué-Dijon
,
P.
Delcroix
,
H.
Martinez-Seara
,
J.
Hladílková
,
P.
Coufal
,
T.
Křížek
, and
P.
Jungwirth
,
J. Phys. Chem. B
122
(
21
),
5640
5648
(
2018
).
20.
O.
Akin-Ojo
,
Y.
Song
, and
F.
Wang
,
J. Chem. Phys.
129
(
6
),
064108
(
2008
).
21.
J. C.
Li
and
F.
Wang
,
J. Chem. Phys.
143
(
21
),
074311
(
2015
).
22.
P.
Li
,
L. F.
Song
, and
K. M.
Merz
, Jr.
,
J. Chem. Theory Comput.
11
(
4
),
1645
1657
(
2015
).
23.
P.
Li
,
L. F.
Song
, and
K. M.
Merz
, Jr.
,
J. Phys. Chem. B
119
(
3
),
883
895
(
2015
).
24.
J.-P.
Piquemal
,
H.
Chevreau
, and
N.
Gresh
,
J. Chem. Theory Comput.
3
(
3
),
824
837
(
2007
).
25.
S. W.
Rick
,
S. J.
Stuart
, and
B. J.
Berne
,
J. Chem. Phys.
101
(
7
),
6141
6156
(
1994
).
26.
H. A.
Stern
,
G. A.
Kaminski
,
J. L.
Banks
,
R.
Zhou
,
B. J.
Berne
, and
R. A.
Friesner
,
J. Phys. Chem. B
103
(
22
),
4730
4737
(
1999
).
27.
Y.
Luo
,
W.
Jiang
,
H. B.
Yu
,
A. D.
MacKerell
, and
B.
Roux
,
Faraday Discuss.
160
,
135
149
(
2013
).
28.
J.-P.
Piquemal
,
L.
Perera
,
G. A.
Cisneros
,
P.
Ren
,
L.
Pedersen
, and
T. A.
Darden
,
J. Chem. Phys.
125
(
5
),
054511
(
2006
).
29.
J. W.
Ponder
,
C.
Wu
,
P.
Ren
,
V. S.
Pande
,
J. D.
Chodera
,
M. J.
Schnieders
,
I.
Haque
,
D. L.
Mobley
,
D. S.
Lambrecht
,
R. A.
DiStasio
,
M.
Head-Gordon
,
G. N. I.
Clark
,
M. E.
Johnson
, and
T.
Head-Gordon
,
J. Phys. Chem. B
114
(
8
),
2549
2564
(
2010
).
30.
N.
Manin
,
M. C.
da Silva
,
I.
Zdravkovic
,
O.
Eliseeva
,
A.
Dyshin
,
O.
Yaşar
,
D. R.
Salahub
,
A. M.
Kolker
,
M. G.
Kiselev
, and
S. Y.
Noskov
,
Phys. Chem. Chem. Phys.
18
(
5
),
4191
4200
(
2016
).
31.
A. V.
Aleksandrov
,
B.
Roux
, and
A. D.
MacKerell
,
J. Chem. Theory Comput.
16
,
4655
(
2020
).
32.
S.
Patel
and
C. L.
Brooks
 III
,
J. Comput. Chem.
25
(
1
),
1
16
(
2004
).
33.
Z.-Z.
Yang
,
J.-J.
Wang
, and
D.-X.
Zhao
,
J. Comput. Chem.
35
(
23
),
1690
1706
(
2014
).
34.
T.
Dudev
,
M.
Devereux
,
M.
Meuwly
,
C.
Lim
,
J.-P.
Piquemal
, and
N.
Gresh
,
J. Comput. Chem.
36
(
5
),
285
302
(
2015
).
35.
Z.
Jing
,
C.
Liu
,
R.
Qi
, and
P.
Ren
,
Proc. Natl. Acad. Sci. U. S. A.
115
(
32
),
E7495
E7501
(
2018
).
36.
H. B.
Yu
,
T. W.
Whitfield
,
E.
Harder
,
G.
Lamoureux
,
I.
Vorobyov
,
V. M.
Anisimov
,
A. D.
MacKerell
, and
B.
Roux
,
J. Chem. Theory Comput.
6
(
3
),
774
786
(
2010
).
37.
A.
Zhang
,
H.
Yu
,
C.
Liu
, and
C.
Song
,
Nat. Commun.
11
(
1
),
922
(
2020
).
38.
V.
Ngo
,
J. K.
Fanning
, and
S. Y.
Noskov
,
Adv. Theory Simul.
2
(
2
),
1800106
(
2019
).
39.
J. D.
Prajapati
,
C.
Mele
,
M. A.
Aksoyoglu
,
M.
Winterhalter
, and
U.
Kleinekathöfer
,
J. Chem. Inf. Model.
60
(
6
),
3188
3203
(
2020
).
40.
F.
Villa
,
A. D.
MacKerell
,
B.
Roux
, and
T.
Simonson
,
J. Phys. Chem. A
122
(
29
),
6147
6155
(
2018
).
41.
D. V.
Sakharov
and
C.
Lim
,
J. Comput. Chem.
30
(
2
),
191
202
(
2009
).
42.
D. V.
Sakharov
and
C.
Lim
,
J. Am. Chem. Soc.
127
(
13
),
4921
4929
(
2005
).
43.
M.
Ropo
,
M.
Schneider
,
C.
Baldauf
, and
V.
Blum
,
Sci. Data
3
(
1
),
160009
(
2016
).
44.
M.
Ropo
,
V.
Blum
, and
C.
Baldauf
,
Sci. Rep.
6
(
1
),
35772
(
2016
).
45.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
46.
M.
Schneider
and
C.
Baldauf
, arXiv:1810.10596 (
2018
).
47.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
(
7
),
073005
(
2009
).
48.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
(
11
),
2175
2196
(
2009
).
49.
X.
Ren
,
P.
Rinke
,
V.
Blum
,
J.
Wieferink
,
A.
Tkatchenko
,
A.
Sanfilippo
,
K.
Reuter
, and
M.
Scheffler
,
New J. Phys.
14
(
5
),
053020
(
2012
).
50.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
(
1
),
141
151
(
1999
).
51.
J. A.
Hartigan
and
M. A.
Wong
,
J. R. Stat. Soc., Ser. C
28
(
1
),
100
108
(
1979
).
52.
C. I.
Bayly
,
P.
Cieplak
,
W.
Cornell
, and
P. A.
Kollman
,
J. Phys. Chem.
97
(
40
),
10269
10280
(
1993
).
53.
F.-Y.
Lin
,
J.
Huang
,
P.
Pandey
,
C.
Rupakheti
,
J.
Li
,
B. T.
Roux
, and
A. D.
MacKerell
, Jr.
,
J. Chem. Theory Comput.
16
(
5
),
3221
3239
(
2020
).
54.
V.
Hornak
,
R.
Abel
,
A.
Okur
,
B.
Strockbine
,
A.
Roitberg
, and
C.
Simmerling
,
Proteins
65
(
3
),
712
725
(
2006
).
55.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
,
R. P.
Wiewiora
,
B. R.
Brooks
, and
V. S.
Pande
,
PLoS Comput. Biol.
13
(
7
),
e1005659
(
2017
).
56.
S.
Jo
,
T.
Kim
,
V. G.
Iyer
, and
W.
Im
,
J. Comput. Chem.
29
(
11
),
1859
1865
(
2008
).
57.
G.
Lamoureux
and
B.
Roux
,
J. Chem. Phys.
119
(
6
),
3025
3039
(
2003
).
58.
B. T.
Thole
,
Chem. Phys.
59
(
3
),
341
350
(
1981
).
59.
E.
Harder
,
V. M.
Anisimov
,
T. W.
Whitfield
,
A. D.
MacKerell
, and
B.
Roux
,
J. Phys. Chem. B
112
(
11
),
3509
3521
(
2008
).
60.
T. J.
Giese
and
D. M.
York
,
J. Chem. Phys.
120
(
21
),
9903
9906
(
2004
).
61.
C. W.
Liu
,
R.
Qi
,
Q. T.
Wang
,
J. P.
Piquemal
, and
P. Y.
Ren
,
J. Chem. Theory Comput.
13
(
6
),
2751
2761
(
2017
).
62.
J.
Kennedy
and
R.
Eberhart
, paper presented at the
Proceedings of ICNN’95 - International Conference on Neural Networks
,
1995
.
63.
R.
Poli
,
J.
Kennedy
, and
T.
Blackwell
,
Swarm Intell.
1
(
1
),
33
57
(
2007
).
65.
R.
Chattopadhyaya
,
W. E.
Meador
,
A. R.
Means
, and
F. A.
Quiocho
,
J. Mol. Biol.
228
(
4
),
1177
1192
(
1992
).
66.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
(
2
),
926
935
(
1983
).
67.
J. C.
Phillips
,
D. J.
Hardy
,
J. D. C.
Maia
,
J. E.
Stone
,
J. V.
Ribeiro
,
R. C.
Bernardi
,
R.
Buch
,
G.
Fiorin
,
J.
Hénin
,
W.
Jiang
,
R.
McGreevy
,
M. C. R.
Melo
,
B. K.
Radak
,
R. D.
Skeel
,
A.
Singharoy
,
Y.
Wang
,
B.
Roux
,
A.
Aksimentiev
,
Z.
Luthey-Schulten
,
L. V.
Kalé
,
K.
Schulten
,
C.
Chipot
, and
E.
Tajkhorshid
,
J. Chem. Phys.
153
(
4
),
044130
(
2020
).
68.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
(
12
),
10089
10092
(
1993
).
69.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
(
3
),
327
341
(
1977
).
70.
S.
Jo
,
X.
Cheng
,
J.
Lee
,
S.
Kim
,
S.-J.
Park
,
D. S.
Patel
,
A. H.
Beaven
,
K. I.
Lee
,
H.
Rui
,
S.
Park
,
H. S.
Lee
,
B.
Roux
,
A. D.
MacKerell
, Jr.
,
J. B.
Klauda
,
Y.
Qi
, and
W.
Im
,
J. Comput. Chem.
38
(
15
),
1114
1124
(
2017
).
71.
P. E. M.
Lopes
,
J.
Huang
,
J.
Shim
,
Y.
Luo
,
H.
Li
,
B.
Roux
, and
A. D.
MacKerell
,
J. Chem. Theory Comput.
9
(
12
),
5430
5449
(
2013
).
72.
A. A.
Kognole
,
A. H.
Aytenfisu
, and
A. D.
MacKerell
,
J. Mol. Model.
26
(
6
),
152
(
2020
).
73.
H.
Goel
,
W. B.
Yu
,
V. D.
Ustach
,
A. H.
Aytenfisu
,
D. L.
Sun
, and
A. D.
MacKerell
,
Phys. Chem. Chem. Phys.
22
(
13
),
6848
6860
(
2020
).
74.
H.
Zheng
,
M.
Chruszcz
,
P.
Lasota
,
L.
Lebioda
, and
W.
Minor
,
J. Inorg. Biochem.
102
(
9
),
1765
1776
(
2008
).
75.
J. A.
Lemkul
, in
Progress in Molecular Biology and Translational Science
, edited by
B.
Strodel
and
B.
Barz
(
Academic Press
,
2020
), Vol. 170, pp.
1
71
.
76.
T.
Dudev
,
Y. L.
Lin
,
M.
Dudev
, and
C.
Lim
,
J. Am. Chem. Soc.
125
(
10
),
3168
3180
(
2003
).
77.
E.
Pidcock
and
G. R.
Moore
,
J. Biol. Inorg Chem.
6
(
5-6
),
479
489
(
2001
).
78.
J.
Gsponer
,
J.
Christodoulou
,
A.
Cavalli
,
J. M.
Bui
,
B.
Richter
,
C. M.
Dobson
, and
M.
Vendruscolo
,
Structure
16
(
5
),
736
746
(
2008
).
79.
C. M.
Shepherd
and
H. J.
Vogel
,
Biophys. J.
87
(
2
),
780
791
(
2004
).
80.
O. Y.
Hui
and
H. J.
Vogel
,
Biometals
11
(
3
),
213
222
(
1998
).
81.
R. W.
Wheatley
,
D. H.
Juers
,
B. B.
Lev
,
R. E.
Huber
, and
S. Y.
Noskov
,
Phys. Chem. Chem. Phys.
17
(
16
),
10899
10909
(
2015
).
82.
C. S.
Babu
and
C.
Lim
,
J. Phys. Chem. A
110
(
2
),
691
699
(
2006
).
83.
H.
Nguyen
,
D. A.
Case
, and
A. S.
Rose
,
Bioinformatics
34
(
7
),
1241
1242
(
2018
).

Supplementary Material

You do not currently have access to this content.