Thermodynamic extrapolation has previously been used to predict arbitrary structural observables in molecular simulations at temperatures (or relative chemical potentials in open-system mixtures) different from those at which the simulation was performed. This greatly reduces the computational cost in mapping out phase and structural transitions. In this work, we explore the limitations and accuracy of thermodynamic extrapolation applied to water, where qualitative shifts from anomalous to simple-fluid-like behavior are manifested through shifts in the liquid structure that occur as a function of both temperature and density. We present formulas for extrapolating in volume for canonical ensembles and demonstrate that linear extrapolations of water’s structural properties are only accurate over a limited density range. On the other hand, linear extrapolation in temperature can be accurate across the entire liquid state. We contrast these extrapolations with classical perturbation theory techniques, which are more conservative and slowly converging. Indeed, we show that such behavior is expected by demonstrating exact relationships between extrapolation of free energies and well-known techniques to predict free energy differences. An ideal gas in an external field is also studied to more clearly explain these results for a toy system with fully analytical solutions. We also present a recursive interpolation strategy for predicting arbitrary structural properties of molecular fluids over a predefined range of state conditions, demonstrating its success in mapping qualitative shifts in water structure with density.

1.
J. C.
Palmer
and
P. G.
Debenedetti
, “
Recent advances in molecular simulation: A chemical engineering perspective
,”
AIChE J.
61
,
370
383
(
2015
).
2.
S. A.
Hollingsworth
and
R. O.
Dror
, “
Molecular dynamics simulation for all
,”
Neuron
99
,
1129
1143
(
2018
).
3.
V.
Spiwok
,
Z.
Sucur
, and
P.
Hosek
, “
Enhanced sampling techniques in biomolecular simulations
,”
Biotechnol. Adv.
33
,
1130
1140
(
2015
).
4.
Y. I.
Yang
,
Q.
Shao
,
J.
Zhang
,
L.
Yang
, and
Y. Q.
Gao
, “
Enhanced sampling in molecular dynamics
,”
J. Chem. Phys.
151
,
070902
(
2019
).
5.
W. M.
Brown
,
P.
Wang
,
S. J.
Plimpton
, and
A. N.
Tharrington
, “
Implementing molecular dynamics on hybrid high performance computers – short range forces
,”
Comput. Phys. Commun.
182
,
898
911
(
2011
).
6.
W. M.
Brown
,
A.
Kohlmeyer
,
S. J.
Plimpton
, and
A. N.
Tharrington
, “
Implementing molecular dynamics on hybrid high performance computers – particle–particle particle-mesh
,”
Comput. Phys. Commun.
183
,
449
459
(
2012
).
7.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
,
R. P.
Wiewiora
,
B. R.
Brooks
, and
V. S.
Pande
, “
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
,”
PLoS Comput. Biol.
13
,
e1005659
(
2017
).
8.
A. W.
Götz
,
M. J.
Williamson
,
D.
Xu
,
D.
Poole
,
S.
Le Grand
, and
R. C.
Walker
, “
Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born
,”
J. Chem. Theory Comput.
8
,
1542
1555
(
2012
).
9.
C.
Kutzner
,
S.
Páll
,
M.
Fechner
,
A.
Esztermann
,
B. L.
Groot
, and
H.
Grubmüller
, “
More bang for your buck: Improved use of GPU nodes for GROMACS 2018
,”
J. Comput. Chem.
40
,
2418
2431
(
2019
).
10.
R.
Salomon-Ferrer
,
A. W.
Götz
,
D.
Poole
,
S.
Le Grand
, and
R. C.
Walker
, “
Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh ewald
,”
J. Chem. Theory Comput.
9
,
3878
3888
(
2013
).
11.
D. E.
Shaw
,
J.
Grossman
,
J. A.
Bank
,
B.
Batson
,
J. A.
Butts
,
J. C.
Chao
,
M. M.
Deneroff
,
R. O.
Dror
,
A.
Even
,
C. H.
Fenton
,
A.
Forte
,
J.
Gagliardo
,
G.
Gill
,
B.
Greskamp
,
C. R.
Ho
,
D. J.
Ierardi
,
L.
Iserovich
,
J. S.
Kuskin
,
R. H.
Larson
,
T.
Layman
,
L.-S.
Lee
,
A. K.
Lerer
,
C.
Li
,
D.
Killebrew
,
K. M.
Mackenzie
,
S. Y.-H.
Mok
,
M. A.
Moraes
,
R.
Mueller
,
L. J.
Nociolo
,
J. L.
Peticolas
,
T.
Quan
,
D.
Ramot
,
J. K.
Salmon
,
D. P.
Scarpazza
,
U. B.
Schafer
,
N.
Siddique
,
C. W.
Snyder
,
J.
Spengler
,
P. T. P.
Tang
,
M.
Theobald
,
H.
Toma
,
B.
Towles
,
B.
Vitale
,
S. C.
Wang
, and
C.
Young
, “
Anton 2: Raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer
,” in
SC14: International Conference for High Performance Computing, Networking, Storage and Analysis
(
IEEE
,
New Orleans, LA, USA
,
2014
), pp.
41
53
.
12.
A.
Purohit
,
A. J.
Schultz
, and
D. A.
Kofke
, “
Force-sampling methods for density distributions as instances of mapped averaging
,”
Mol. Phys.
117
,
2822
2829
(
2019
).
13.
A. J.
Schultz
and
D. A.
Kofke
, “
Alternatives to conventional ensemble averages for thermodynamic properties
,”
Curr. Opin. Chem. Eng.
23
,
70
76
(
2019
).
14.
A. J.
Schultz
,
S. G.
Moustafa
,
W.
Lin
,
S. J.
Weinstein
, and
D. A.
Kofke
, “
Reformulation of ensemble averages via coordinate mapping
,”
J. Chem. Theory Comput.
12
,
1491
1498
(
2016
).
15.
N. A.
Mahynski
,
J. R.
Errington
, and
V. K.
Shen
, “
Multivariable extrapolation of grand canonical free energy landscapes
,”
J. Chem. Phys.
147
,
234111
(
2017
).
16.
N. A.
Mahynski
,
M. A.
Blanco
,
J. R.
Errington
, and
V. K.
Shen
, “
Predicting low-temperature free energy landscapes with flat-histogram Monte Carlo methods
,”
J. Chem. Phys.
146
,
074101
(
2017
).
17.
N. A.
Mahynski
,
J. R.
Errington
, and
V. K.
Shen
, “
Temperature extrapolation of multicomponent grand canonical free energy landscapes
,”
J. Chem. Phys.
147
,
054105
(
2017
).
18.
M.
Witman
,
N. A.
Mahynski
, and
B.
Smit
, “
Flat-histogram Monte Carlo as an efficient tool to evaluate adsorption processes involving rigid and deformable molecules
,”
J. Chem. Theory Comput.
14
,
6149
6158
(
2018
).
19.
H. W.
Hatch
,
S.
Jiao
,
N. A.
Mahynski
,
M. A.
Blanco
, and
V. K.
Shen
, “
Communication: Predicting virial coefficients and alchemical transformations by extrapolating Mayer-sampling Monte Carlo simulations
,”
J. Chem. Phys.
147
,
231102
(
2017
).
20.
N. A.
Mahynski
,
S.
Jiao
,
H. W.
Hatch
,
M. A.
Blanco
, and
V. K.
Shen
, “
Predicting structural properties of fluids by thermodynamic extrapolation
,”
J. Chem. Phys.
148
,
194105
(
2018
).
21.
Z. A.
Piskulich
,
O. O.
Mesele
, and
W. H.
Thompson
, “
Removing the barrier to the calculation of activation energies: Diffusion coefficients and reorientation times in liquid water
,”
J. Chem. Phys.
147
,
134103
(
2017
).
22.
Z. A.
Piskulich
,
O. O.
Mesele
, and
W. H.
Thompson
, “
Activation energies and beyond
,”
J. Phys. Chem. A
123
,
7185
7194
(
2019
).
23.
Z. A.
Piskulich
and
W. H.
Thompson
, “
The dynamics of supercooled water can be predicted from room temperature simulations
,”
J. Chem. Phys.
152
,
074505
(
2020
).
24.
E.
Brini
,
C. J.
Fennell
,
M.
Fernandez-Serra
,
B.
Hribar-Lee
,
M.
Lukšič
, and
K. A.
Dill
, “
How water’s properties are encoded in its molecular structure and energies
,”
Chem. Rev.
117
,
12385
12414
(
2017
).
25.
P.
Gallo
,
K.
Amann-Winkel
,
C. A.
Angell
,
M. A.
Anisimov
,
F.
Caupin
,
C.
Chakravarty
,
E.
Lascaris
,
T.
Loerting
,
A. Z.
Panagiotopoulos
,
J.
Russo
,
J. A.
Sellberg
,
H. E.
Stanley
,
H.
Tanaka
,
C.
Vega
,
L.
Xu
, and
L. G. M.
Pettersson
, “
Water: A tale of two liquids
,”
Chem. Rev.
116
,
7463
7500
(
2016
).
26.
M.
Agarwal
,
M. P.
Alam
, and
C.
Chakravarty
, “
Thermodynamic, diffusional, and structural anomalies in rigid-body water models
,”
J. Phys. Chem. B
115
,
6935
6945
(
2011
).
27.
J. R.
Errington
and
P. G.
Debenedetti
, “
Relationship between structural order and the anomalies of liquid water
,”
Nature
409
,
318
321
(
2001
).
28.
J. I.
Monroe
and
M. S.
Shell
, “
Decoding signatures of structure, bulk thermodynamics, and solvation in three-body angle distributions of rigid water models
,”
J. Chem. Phys.
151
,
094501
(
2019
).
29.
Z. A.
Piskulich
and
W. H.
Thompson
, “
On the temperature dependence of liquid structure
,”
J. Chem. Phys.
152
,
011102
(
2020
).
30.
R. W.
Zwanzig
, “
High-temperature equation of state by a perturbation method. I. Nonpolar gases
,”
J. Chem. Phys.
22
,
1420
1426
(
1954
).
31.
J. G.
Kirkwood
, “
Statistical mechanics of fluid mixtures
,”
J. Chem. Phys.
3
,
300
313
(
1935
).
32.
G.
Hummer
, “
Fast-growth thermodynamic integration: Error and efficiency analysis
,”
J. Chem. Phys.
114
,
7330
7337
(
2001
).
33.
A. D. D.
Craik
, “
Prehistory of Faà di Bruno’s formula
,”
Am. Math. Mon.
112
,
119
130
(
2005
).
34.
L.
Comtet
,
Advanced Combinatorics
(
D. Reidel Publishing Company
,
Dordrecht, Holland
,
1974
).
35.
N.
Lu
and
D. A.
Kofke
, “
Understanding and improving free energy calculations in molecular simulations: Error analysis and reduction methods
,” in
Free Energy Calculations
, edited by
C.
Chipot
and
A.
Pohorille
(
Springer
,
2007
), pp.
199
247
.
36.
C. H.
Bennett
, “
Efficient estimation of free energy differences from Monte Carlo data
,”
J. Comput. Phys.
22
,
245
268
(
1976
).
37.
K. A.
Beauchamp
,
J. D.
Chodera
,
L. N.
Naden
, and
M. R.
Shirts
, Pymbar.
38.
K.
Kamat
and
B.
Peters
, “
Diabat interpolation for polymorph free-energy differences
,”
J. Phys. Chem. Lett.
8
,
655
660
(
2017
).
39.
P. V.
Klimovich
,
M. R.
Shirts
, and
D. L.
Mobley
, “
Guidelines for the analysis of free energy calculations
,”
J. Comput.-Aided Mol. Des.
29
,
397
411
(
2015
).
40.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
,
124105
(
2008
).
41.
M. R.
Shirts
and
V. S.
Pande
, “
Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration
,”
J. Chem. Phys.
122
,
144107
(
2005
).
42.
S.
Bruckner
and
S.
Boresch
, “
Efficiency of alchemical free energy simulations. II. Improvements for thermodynamic integration
,”
J. Comput. Chem.
32
,
1320
1333
(
2011
).
43.
D. A.
Kofke
, “
Free energy methods in molecular simulation
,”
Fluid Phase Equilib.
228-229
,
41
48
(
2005
).
44.
N.
Lu
and
D. A.
Kofke
, “
Optimal intermediates in staged free energy calculations
,”
J. Chem. Phys.
111
,
4414
4423
(
1999
).
45.
A.
Pohorille
,
C.
Jarzynski
, and
C.
Chipot
, “
Good practices in free-energy calculations
,”
J. Phys. Chem. B
114
,
10235
10253
(
2010
).
46.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
47.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1-2
,
19
25
(
2015
).
48.
G.
Hummer
,
S.
Garde
,
A. E.
Garcia
,
A.
Pohorille
, and
L. R.
Pratt
, “
An information theory model of hydrophobic interactions
,”
Proc. Natl. Acad. Sci. U. S. A.
93
,
8951
8955
(
1996
).
49.
S. N.
Jamadagni
,
R.
Godawat
, and
S.
Garde
, “
Hydrophobicity of proteins and interfaces: Insights from density fluctuations
,”
Annu. Rev. Chem. Biomol. Eng.
2
,
147
171
(
2011
).
50.
V.
Molinero
and
E. B.
Moore
, “
Water modeled as an intermediate element between carbon and silicon
,”
J. Phys. Chem. B
113
,
4008
4016
(
2009
).
51.
P.-L.
Chau
and
A. J.
Hardwick
, “
A new order parameter for tetrahedral configurations
,”
Mol. Phys.
93
,
511
518
(
1998
).
52.
A.
Chaimovich
and
M. S.
Shell
, “
Tetrahedrality and structural order for hydrophobic interactions in a coarse-grained water model
,”
Phys. Rev. E
89
,
022140
(
2014
).
53.
H. S.
Ashbaugh
and
L. R.
Pratt
, “
Colloquium : Scaled particle theory and the length scales of hydrophobicity
,”
Rev. Mod. Phys.
78
,
159
178
(
2006
).
54.
A. P.
Willard
and
D.
Chandler
, “
Instantaneous liquid interfaces
,”
J. Phys. Chem. B
114
,
1954
1958
(
2010
).
55.
A. J.
Patel
,
P.
Varilly
,
S. N.
Jamadagni
,
M. F.
Hagan
,
D.
Chandler
, and
S.
Garde
, “
Sitting at the edge: How biomolecules use hydrophobicity to tune their interactions and function
,”
J. Phys. Chem. B
116
,
2498
2503
(
2012
).
56.
P. G.
Debenedetti
,
Metastable Liquids: Concepts and Principles
, Physical Chemistry: Science and Engineering (
Princeton University Press
,
Princeton, NJ
,
1997
).
57.
C. E.
Rasmussen
and
C. K. I.
Williams
,
Gaussian Processes for Machine Learning
, Adaptive Computation and Machine Learning (
MIT Press
,
Cambridge, MA
,
2006
).
58.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
Sausalito, CA
,
2000
).
59.
M. S.
Shell
,
Thermodynamics and Statistical Mechanics
(
Cambridge University Press
,
Cambridge, United Kingdom
,
2015
).

Supplementary Material

You do not currently have access to this content.