A novel mechanochemical method for the simulation of molecules and molecular crystals under hydrostatic pressure, the eXtended Hydrostatic Compression Force Field (X-HCFF) approach, is introduced. In contrast to comparable methods, the desired pressure can be adjusted non-iteratively and molecules of general shape retain chemically reasonable geometries even at high pressure. The implementation of the X-HCFF approach is straightforward, and the computational cost is practically the same as for regular geometry optimization. Pressure can be applied by using any desired electronic structure method for which a nuclear gradient is available. The results of the X-HCFF for pressure-dependent intramolecular structural changes in the investigated molecules and molecular crystals as well as a simple pressure-induced dimerization reaction are chemically intuitive and fall within the range of other established computational methods. Experimental spectroscopic data of a molecular crystal under pressure are reproduced accurately.

1.
P. F.
McMillan
, “
Chemistry at high pressure
,”
Chem. Soc. Rev.
35
,
855
857
(
2006
).
2.
W.
Grochala
,
R.
Hoffmann
,
J.
Feng
, and
N. W.
Ashcroft
, “
The chemical imagination at work in very tight places
,”
Angew. Chem., Int. Ed.
46
,
3620
3642
(
2007
).
3.
V.
Schettino
and
R.
Bini
, “
Constraining molecules at the closest approach: Chemistry at high pressure
,”
Chem. Soc. Rev.
36
,
869
880
(
2007
).
4.
B.
Li
,
C.
Ji
,
W.
Yang
,
J.
Wang
,
K.
Yang
,
R.
Xu
,
W.
Liu
,
Z.
Cai
,
J.
Chen
, and
H.-k.
Mao
, “
Diamond anvil cell behavior up to 4 Mbar
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
1713
1717
(
2018
).
5.
L.
Stixrude
and
R. E.
Cohen
, “
High-pressure elasticity of iron and anisotropy of Earth’s inner core
,”
Science
267
,
1972
1975
(
1995
).
6.
N.
Casati
,
A.
Kleppe
,
A. P.
Jephcoat
, and
P.
Macchi
, “
Putting pressure on aromaticity along with in situ experimental electron density of a molecular crystal
,”
Nat. Commun.
7
,
10901
(
2016
).
7.
M.
Chandrasekhar
,
S.
Guha
, and
W.
Graupner
, “
Squeezing organic conjugated molecules—What does one learn?
,”
Adv. Mater.
13
,
613
618
(
2001
).
8.
M.
Kato
,
M.
Higashi
, and
Y.
Taniguchi
, “
Effect of pressure on the internal rotation angle of biphenyl in carbon disulfide
,”
J. Chem. Phys.
89
,
5417
5421
(
1988
).
9.
I. D.
Brown
,
P.
Klages
, and
A.
Skowron
, “
Influence of pressure on the lengths of chemical bonds
,”
Acta Crystallogr. B
59
,
439
448
(
2003
).
10.
P.
Puschnig
,
C.
Ambrosch-Draxl
,
G.
Heimel
,
E.
Zojer
,
R.
Resel
,
G.
Leising
,
M.
Kriechbaum
, and
W.
Graupner
, “
Pressure studies on the intermolecular interactions in biphenyl
,”
Synth. Met.
116
,
327
331
(
2001
).
11.
A.
Katrusiak
, “
High-pressure X-ray diffraction study of 2-methyl-1,3-cyclopentanedione crystals
,”
High Pressure Res.
6
,
155
167
(
1991
).
12.
L.
Cartz
,
S. R.
Srinivasa
,
R. J.
Riedner
,
J. D.
Jorgensen
, and
T. G.
Worlton
, “
Effect of pressure on bonding in black phosphorus
,”
J. Chem. Phys.
71
,
1718
1721
(
1979
).
13.
E.
Zurek
and
W.
Grochala
, “
Predicting crystal structures and properties of matter under extreme conditions via quantum mechanics: The pressure is on
,”
Phys. Chem. Chem. Phys.
17
,
2917
2934
(
2015
).
14.
P.
Demontis
,
R.
Lesar
, and
M. L.
Klein
, “
New high-pressure phases of ice
,”
Phys. Rev. Lett.
60
,
2284
2287
(
1988
).
15.
S.
Nosé
and
M. L.
Klein
, “
Constant pressure molecular dynamics for molecular systems
,”
Mol. Phys.
50
,
1055
1076
(
1983
).
16.
M.
Mugnai
,
G.
Cardini
, and
V.
Schettino
, “
Charge separation and polymerization of hydrocarbons at an ultrahigh pressure
,”
Phys. Rev. B
70
,
020101
(
2004
).
17.
S.
Imoto
,
P.
Kibies
,
C.
Rosin
,
R.
Winter
,
S. M.
Kast
, and
D.
Marx
, “
Toward extreme biophysics: Deciphering the infrared response of biomolecular solutions at high pressures
,”
Angew. Chem., Int. Ed.
55
,
9534
9538
(
2016
).
18.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics. Basic Theory and Advanced Methods
, 1st ed. (
Cambridge University Press
,
Cambridge, UK
,
2009
).
19.
T.
Stauch
, “
Quantum chemical modeling of molecules under pressure
,”
Int. J. Quantum Chem.
2020
,
e26208
.
20.
R.
Cammi
,
V.
Verdolino
,
B.
Mennucci
, and
J.
Tomasi
, “
Towards the elaboration of a QM method to describe molecular solutes under the effect of a very high pressure
,”
Chem. Phys.
344
,
135
141
(
2008
).
21.
R.
Cammi
, “
New extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure
,”
J. Comput. Chem.
36
,
2246
2259
(
2015
).
22.
B.
Chen
,
R.
Hoffmann
, and
R.
Cammi
, “
The effect of pressure on organic reactions in fluids: A new theoretical perspective
,”
Angew. Chem., Int. Ed.
56
,
11126
11142
(
2017
).
23.
R.
Fukuda
and
K.
Nakatani
, “
Quantum chemical study on the high-pressure effect for [4 + 4] retrocycloaddition of anthracene cyclophane photodimer
,”
J. Phys. Chem. C
123
,
4493
4501
(
2019
).
24.
M.
Pagliai
,
G.
Cardini
, and
R.
Cammi
, “
Vibrational frequencies of fullerenes C60 and C70 under pressure studied with a quantum chemical model including spatial confinement effect
,”
J. Phys. Chem. A
118
,
5098
5111
(
2014
).
25.
R.
Fukuda
,
M.
Ehara
, and
R.
Cammi
, “
Modeling molecular systems at extreme pressure by an extension of the polarizable continuum model (PCM) based on the symmetry-adapted cluster-configuration interaction (SAC-CI) method: Confined electronic excited states of furan as a test case
,”
J. Chem. Theory Comput.
11
,
2063
2076
(
2015
).
26.
M.
Rahm
,
R.
Cammi
,
N. W.
Ashcroft
, and
R.
Hoffmann
, “
Squeezing all elements in the periodic table: Electron configuration and electronegativity of the atoms under compression
,”
J. Am. Chem. Soc.
141
,
10254
10271
(
2019
).
27.
C.
Caratelli
,
R.
Cammi
,
R.
Chelli
,
M.
Pagliai
,
G.
Cardini
, and
V.
Schettino
, “
Insights on the realgar crystal under pressure from XP-PCM and periodic model calculations
,”
J. Phys. Chem. A
121
,
8825
8834
(
2017
).
28.
T.
Stauch
and
A.
Dreuw
, “
Advances in quantum mechanochemistry: Electronic structure methods and force analysis
,”
Chem. Rev.
116
,
14137
14180
(
2016
).
29.
G.
Subramanian
,
N.
Mathew
, and
J.
Leiding
, “
A generalized force-modified potential energy surface for mechanochemical simulations
,”
J. Chem. Phys.
143
,
134109
(
2015
).
30.
S. K.
Jha
,
K.
Brown
,
G.
Todde
, and
G.
Subramanian
, “
A mechanochemical study of the effects of compression on a Diels-Alder reaction
,”
J. Chem. Phys.
145
,
074307
(
2016
).
31.
G.
Todde
,
S. K.
Jha
, and
G.
Subramanian
, “
The effect of external forces on the initial dissociation of RDX (1,3,5-trinitro-1,3,5-triazine): A mechanochemical study
,”
Int. J. Quantum Chem.
117
,
e25426
(
2017
).
32.
M. T.
Ong
,
J.
Leiding
,
H.
Tao
,
A. M.
Virshup
, and
T. J.
Martínez
, “
First principles dynamics and minimum energy pathways for mechanochemical ring opening of cyclobutene
,”
J. Am. Chem. Soc.
131
,
6377
6379
(
2009
).
33.
T.
Stauch
,
R.
Chakraborty
, and
M.
Head-Gordon
, “
Quantum chemical modeling of pressure-induced spin crossover in octahedral metal-ligand complexes
,”
ChemPhysChem
20
,
2742
2747
(
2019
).
34.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
864
871
(
1964
).
35.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
1133
1138
(
1965
).
36.
Y.
Shao
 et al., “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2014
).
37.
G. S.
Kochhar
,
G. S.
Heverly-Coulson
, and
N. J.
Mosey
, “
Theoretical approaches for understanding the interplay between stress and chemical reactivity
,”
Top. Curr. Chem.
369
,
37
96
(
2015
).
38.
A. W.
Lange
and
J. M.
Herbert
, “
Polarizable continuum reaction-field solvation models affording smooth potential energy surfaces
,”
J. Phys. Chem. Lett.
1
,
556
561
(
2010
).
39.
M.
Rahm
,
M.
Ångqvist
,
J. M.
Rahm
,
P.
Erhart
, and
R.
Cammi
, “
Non-bonded radii of the atoms under compression
,”
ChemPhysChem
(published online).
40.
A.
Bondi
, “
van der Waals volumes and radii
,”
J. Phys. Chem.
68
,
441
451
(
1964
).
41.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
42.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
43.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
44.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
45.
A. D.
Becke
, “
A new mixing of Hartree-Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
46.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
,
2257
2261
(
1972
).
47.
H.
Liu
,
F.
Wang
, and
X.
Gong
, “
DFT studies on 7-nitrotetrazolo [1,5]furazano[4,5-b]pyridine 1-oxide: Crystal structure, detonation properties, sensitivity and effect of hydrostatic compression
,”
Struct. Chem.
25
,
239
249
(
2014
).
48.
T. A.
de Toledo
,
R. C.
da Costa
,
R. R. F.
Bento
, and
P. S.
Pizani
, “
Hydrostatic pressure and temperature effect on the Raman spectra of the molecular crystal 2-amine-1,3,4-thiadiazole
,”
J. Mol. Struct.
1156
,
127
135
(
2018
).
49.
F.
Tassone
,
G. L.
Chiarotti
,
R.
Rousseau
,
S.
Scandolo
, and
E.
Tosatti
, “
Dimerization of CO2 at high pressure and temperature
,”
ChemPhysChem
6
,
1752
1756
(
2005
).
50.
T.
Stauch
and
A.
Dreuw
, “
Quantum chemical strain analysis for mechanochemical processes
,”
Acc. Chem. Res.
50
,
1041
1048
(
2017
).

Supplementary Material

You do not currently have access to this content.