A multidimensional semiclassical method for calculating tunneling splittings in vibrationally excited states of molecules using Cartesian coordinates is developed. It is an extension of the theory by Mil’nikov and Nakamura [J. Chem. Phys. 122, 124311 (2005)] to asymmetric paths that are necessary for calculating tunneling splitting patterns in multi-well systems, such as water clusters. Additionally, new terms are introduced in the description of the semiclassical wavefunction that drastically improves the splitting estimates for certain systems. The method is based on the instanton theory and builds the semiclassical wavefunction of the vibrationally excited states from the ground-state instanton wavefunction along the minimum action path and its harmonic neighborhood. The splittings of excited states are thus obtained at a negligible added numerical effort. The cost is concentrated, as for the ground-state splittings, in the instanton path optimization and the hessian evaluation along the path. The method can thus be applied without modification to many mid-sized molecules in full dimensionality and in combination with on-the-fly evaluation of electronic potentials. The tests were performed on several model potentials and on the water dimer.

1.
R. P.
Bell
,
The Tunnel Effect in Chemistry
(
Chapman and Hall
,
London
,
1980
).
2.
L. H.
Coudert
and
J. T.
Hougen
,
J. Mol. Spectrosc.
130
,
86
(
1988
).
3.
T. R.
Walsh
and
D. J.
Wales
,
J. Chem. Soc. Faraday Trans.
92
,
2505
(
1996
).
4.
Y.
Xu
and
W.
Jäger
,
J. Chem. Phys.
106
,
7968
(
1997
).
5.
F. N.
Keutsch
and
R. J.
Saykally
,
Proc. Natl. Acad. Sci. U. S. A.
98
,
10533
(
2001
).
6.
K.
Liu
,
M. G.
Brown
,
J. D.
Cruzan
, and
R. J.
Saykally
,
Science
271
,
62
(
1996
).
7.
M. T.
Cvitaš
and
J. O.
Richardson
, in
Molecular Spectroscopy and Quantum Dynamics
, edited by
R.
Marquardt
and
M.
Quack
(
Elsevier
,
2020
), Chap. 10.
8.
T.
Hammer
,
M. D.
Coutinho-Neto
,
A.
Viel
, and
U.
Manthe
,
J. Chem. Phys.
131
,
224109
(
2009
).
9.
C.
Fábri
,
R.
Marquardt
,
A. G.
Császár
, and
M.
Quack
,
J. Chem. Phys.
150
,
014102
(
2019
).
10.
P. M.
Felker
and
Z.
Bačić
,
J. Chem. Phys.
151
,
024305
(
2019
).
11.
M.
Ceriotti
,
W.
Fang
,
P. G.
Kusalik
,
R. H.
McKenzie
,
A.
Michaelides
,
M. A.
Morales
, and
T. E.
Markland
,
Chem. Rev.
116
,
7529
(
2016
).
12.
Y.
Wang
,
X.
Huang
,
B. C.
Shepler
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Chem. Phys.
134
,
094509
(
2011
).
13.
S. K.
Reddy
,
S. C.
Straight
,
P.
Bajaj
,
C.
Huy Pham
,
M.
Riera
,
D. R.
Moberg
,
M. A.
Morales
,
C.
Knight
,
A. W.
Götz
, and
F.
Paesani
,
J. Chem. Phys.
145
,
194504
(
2016
).
14.
J. O.
Richardson
,
S. C.
Althorpe
, and
D. J.
Wales
,
J. Chem. Phys.
135
,
124109
(
2011
).
15.
F. N.
Keutsch
,
R. S.
Fellers
,
M. R.
Viant
, and
R. J.
Saykally
,
J. Chem. Phys.
114
,
4005
(
2001
).
16.
W. T. S.
Cole
,
R. S.
Fellers
,
M. R.
Viant
, and
R. J.
Saykally
,
J. Chem. Phys.
146
,
014306
(
2017
).
17.
M. T.
Cvitaš
and
J. O.
Richardson
,
Phys. Chem. Chem. Phys.
22
,
1035
(
2019
).
18.
B. J.
Mhin
,
J.
Kim
,
S.
Lee
,
J. Y.
Lee
, and
K. S.
Kim
,
J. Chem. Phys.
100
,
4484
(
1994
).
19.
C.
Pérez
,
M. T.
Muckle
,
D. P.
Zaleski
,
N. A.
Seifert
,
B.
Temelso
,
G. C.
Shields
,
Z.
Kisiel
, and
B. H.
Pate
,
Science
336
,
897
(
2012
).
20.
J. O.
Richardson
,
C.
Pérez
,
S.
Lobsiger
,
A. A.
Reid
,
B.
Temelso
,
G. C.
Shields
,
Z.
Kisiel
,
D. J.
Wales
,
B. H.
Pate
, and
S. C.
Althorpe
,
Science
351
,
1310
(
2016
).
21.
C.
Léonard
,
N. C.
Handy
,
S.
Carter
, and
J. M.
Bowman
,
Spectrochim. Acta, Part A
58
,
825
(
2002
).
22.
M.
Neff
and
G.
Rauhut
,
Spectrochim. Acta, Part A
119
,
100
(
2014
).
23.
J.
Šmydke
,
C.
Fábri
,
J.
Sarka
, and
A. G.
Császár
,
Phys. Chem. Chem. Phys.
21
,
3453
(
2019
).
24.
F.
Wu
,
Y.
Ren
, and
W.
Bian
,
J. Chem. Phys.
145
,
074309
(
2016
).
25.
C.
Leforestier
,
K.
Szalewicz
, and
A.
van der Avoird
,
J. Chem. Phys.
137
,
014305
(
2012
).
26.
X.-G.
Wang
and
T.
Carrington
,
J. Chem. Phys.
148
,
074108
(
2018
).
27.
M.
Schröder
,
F.
Gatti
, and
H.-D.
Meyer
,
J. Chem. Phys.
134
,
234307
(
2011
).
28.
M.
Schröder
and
H.-D.
Meyer
,
J. Chem. Phys.
141
,
034116
(
2014
).
29.
T.
Hammer
and
U.
Manthe
,
J. Chem. Phys.
134
,
224305
(
2011
).
30.
D.
Blume
and
K. B.
Whaley
,
J. Chem. Phys.
112
,
2218
(
2000
).
31.
A.
Viel
,
M. D.
Coutinho-Neto
, and
U.
Manthe
,
J. Chem. Phys.
126
,
024308
(
2007
).
32.
Y.
Wang
,
B. J.
Braams
,
J. M.
Bowman
,
S.
Carter
, and
D. P.
Tew
,
J. Chem. Phys.
128
,
224314
(
2008
).
33.
C. L.
Vaillant
,
D. J.
Wales
, and
S. C.
Althorpe
,
J. Phys. Chem. Lett.
10
,
7300
(
2019
).
34.
D. J.
Nesbitt
and
F.
Dong
,
Phys. Chem. Chem. Phys.
10
,
2113
(
2008
).
35.
C.
Qu
and
J. M.
Bowman
,
Phys. Chem. Chem. Phys.
18
,
24835
(
2016
).
36.
S. C.
Althorpe
and
D. C.
Clary
,
J. Chem. Phys.
102
,
4390
(
1995
).
37.
I.
Matanović
,
N.
Došlić
, and
B. R.
Johnson
,
J. Chem. Phys.
128
,
084103
(
2008
).
38.
E.
Kamarchik
,
Y.
Wang
, and
J.
Bowman
,
J. Phys. Chem. A
113
,
7556
(
2009
).
39.
T. D.
Sewell
,
Y.
Guo
, and
D. L.
Thompson
,
J. Chem. Phys.
103
,
8557
(
1995
).
40.
C. S.
Tautermann
,
A. F.
Voegele
,
T.
Loerting
, and
K. R.
Liedl
,
J. Chem. Phys.
117
,
1967
(
2002
).
42.
T. A. H.
Burd
and
D. C.
Clary
,
J. Chem. Theory Comput.
16
,
3486
(
2020
).
43.
N.
Makri
and
W. H.
Miller
,
J. Chem. Phys.
91
,
4026
(
1989
).
44.
S.
Coleman
, in
Proceedings International School of Subnuclear Physics
(
Erice
,
1977
);
Also in
S.
Coleman
,
Aspects of Symmetry
(
Cambridge University Press
,
1985
), Chap. 7, pp.
265
350
.
45.
A. I.
Vainshtein
,
V. I.
Zakharov
,
V. A.
Novikov
, and
M. A.
Shifman
,
Sov. Phys. Usp.
25
,
195
(
1982
);
Also in
Instantons in Gauge Theories
, edited by
M.
Shifman
(
World Scientific
,
Singapore
,
1994
), p.
468
.
46.
W. H.
Miller
,
J. Chem. Phys.
62
,
1899
(
1975
).
47.
V. A.
Benderskii
,
D. E.
Makarov
, and
C. A.
Wight
,
Chemical Dynamics at Low Temperatures
, Advances in Chemical Physics Vol. 88 (
Wiley
,
New York
,
1994
).
48.
W.
Siebrand
,
Z.
Smedarchina
,
M. Z.
Zgierski
, and
A.
Fernández-Ramos
,
Int. Rev. Phys. Chem.
18
,
5
(
1999
).
49.
Z.
Smedarchina
,
W.
Caminati
, and
F.
Zerbetto
,
Chem. Phys. Lett.
237
,
279
(
1995
).
50.
Z.
Smedarchina
,
W.
Siebrand
, and
A.
Fernández-Ramos
,
J. Chem. Phys.
137
,
224105
(
2012
).
51.
V. A.
Benderskii
,
E. V.
Vetoshkin
,
S. Yu.
Grebenshchikov
,
L.
von Laue
, and
H. P.
Trommsdorff
,
Chem. Phys.
219
,
119
(
1997
).
52.
G. V.
Mil’nikov
and
H.
Nakamura
,
J. Chem. Phys.
115
,
6881
(
2001
).
53.
G. V.
Mil’nikov
and
H.
Nakamura
,
J. Chem. Phys.
122
,
124311
(
2005
).
54.
J. O.
Richardson
and
S. C.
Althorpe
,
J. Chem. Phys.
134
,
054109
(
2011
).
55.
C. L.
Vaillant
and
M. T.
Cvitaš
,
Phys. Chem. Chem. Phys.
20
,
26809
(
2018
).
56.
J. O.
Richardson
,
D. J.
Wales
,
S. C.
Althorpe
,
R. P.
McLaughlin
,
M. R.
Viant
,
O.
Shih
, and
R. J.
Saykally
,
J. Phys. Chem. A
117
,
6960
(
2013
).
57.
A.
Garg
,
Am. J. Phys.
68
,
430
(
2000
).
58.
C.
Herring
,
Rev. Mod. Phys.
34
,
631
(
1962
).
59.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics: Non-Relativistic Theory
, 2nd ed. (
Pergamon Press
,
Oxford
,
1965
).
60.
H.
Nakamura
and
G.
Mil’nikov
,
Quantum Mechanical Tunneling in Chemical Physics
(
CRC Press
,
Boca Raton, FL
,
2013
).
61.
V. A.
Benderskii
,
E. V.
Vetoshkin
,
L.
von Laue
, and
H. P.
Trommsdorff
,
Chem. Phys.
219
,
143
(
1997
).
62.
V. A.
Benderskii
,
E. V.
Vetoshkin
,
I. S.
Irgibaeva
, and
H. P.
Trommsdorff
,
Chem. Phys.
262
,
393
(
2000
).
63.
Z.
Smedarchina
,
W.
Siebrand
, and
M. Z.
Zgierski
,
J. Chem. Phys.
104
,
1203
(
1996
).
64.
A.
Fernández-Ramos
,
Z.
Smedarchina
,
M. Z.
Zgierski
, and
W.
Siebrand
,
J. Chem. Phys.
109
,
1004
(
1998
).
65.
G.
Mil’nikov
,
O.
Kühn
, and
H.
Nakamura
,
J. Chem. Phys.
123
,
074308
(
2005
).
66.
G. V.
Mil’nikov
,
T.
Ishida
, and
H.
Nakamura
,
J. Phys. Chem. A
110
,
5430
(
2006
).
67.
M.
Eraković
,
C. L.
Vaillant
, and
M. T.
Cvitaš
,
J. Chem. Phys.
152
,
084111
(
2020
).
68.
M. T.
Cvitaš
and
S. C.
Althorpe
,
J. Chem. Theory Comput.
12
,
787
(
2016
).
69.
M. T.
Cvitaš
,
J. Chem. Theory Comput.
14
,
1487
(
2018
).
70.
H.
Kleinert
,
Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets
, 5th ed. (
World Scientific
,
Singapore
,
2009
).
71.
V. A.
Benderskii
,
S. Y.
Grebenshchikov
, and
G. V.
Mil’nikov
,
Chem. Phys.
194
,
1
(
1995
).
72.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed. (
Cambridge University Press
,
Cambridge
,
2007
).
73.
T.
Kawatsu
and
S.
Miura
,
J. Chem. Phys.
141
,
024101
(
2014
).
74.
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
).
75.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
,
J. Chem. Theory Comput.
9
,
5395
(
2013
).
76.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
,
J. Chem. Theory Comput.
10
,
1599
(
2014
).
77.
C. L.
Vaillant
,
S. C.
Althorpe
, and
D. J.
Wales
,
J. Chem. Theory Comput.
15
,
33
(
2019
).
78.
Y.
Watanabe
,
T.
Taketsugu
, and
D. J.
Wales
,
J. Chem. Phys.
120
,
5993
(
2004
).
79.
L. B.
Braly
,
J. D.
Cruzan
,
K.
Liu
,
R. S.
Fellers
, and
R. J.
Saykally
,
J. Chem. Phys.
112
,
10293
(
2000
).
80.
E. N.
Karyakin
,
G. T.
Fraser
, and
R. D.
Suenram
,
Mol. Phys.
78
,
1179
(
1993
).
81.
T. T.
Nguyen
,
E.
Székely
,
G.
Imbalzano
,
J.
Behler
,
G.
Csányi
,
M.
Ceriotti
,
A. W.
Götz
, and
F.
Paesani
,
J. Chem. Phys.
148
,
241725
(
2018
).
82.
R.
Courant
and
D.
Hilbert
,
Methods of Mathematical Physics
(
Wiley-Interscience
,
1962
), Vol. II.
83.
R. M.
Minyaev
and
D. J.
Wales
,
J. Chem. Soc., Faraday Trans.
90
,
1839
(
1994
).
You do not currently have access to this content.