A molecular mechanical model for liquid water is developed that uses a physically motivated potential to represent Pauli repulsion and dispersion instead of the standard Lennard-Jones potential. The model has three atomic sites and a virtual site located on the HOH bisector (i.e., a TIP4P-type model). Pauli-repulsive interactions are represented using a Buckingham-type exponential decay potential. Dispersion interactions are represented by both C6/r6 and C8/r8 terms. This higher order C8 dispersion term has been neglected by most force fields. The ForceBalance code was used to define parameters that optimally reproduce the experimental physical properties of liquid water. The resulting model is in good agreement with the experimental density, dielectric constant, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, diffusion coefficient, and radial distribution function. A graphical processing unit-accelerated implementation of this improved non-bonded potential can be employed in OpenMM without modification by using the CustomNonBondedForce feature. The efficient and automated parameterization of these non-bonded potentials provides a rational strategy to define a new molecular mechanical force field that treats repulsion and dispersion interactions more rigorously without major modifications to the existing simulation codes or a substantially larger computational cost.

1.
G.
Lamoureux
,
A. D.
MacKerell
, Jr.
, and
B.
Roux
,
J. Chem. Phys.
119
,
5185
(
2003
).
2.
A. J.
Lee
and
S. W.
Rick
,
J. Chem. Phys.
134
,
184507
(
2011
).
3.
M. L.
Laury
,
L.-P.
Wang
,
V. S.
Pande
,
T.
Head-Gordon
, and
J. W.
Ponder
,
J. Phys. Chem. B
119
,
9423
(
2015
).
4.
S. W.
Rick
,
J. Comput. Chem.
37
,
2060
(
2016
).
5.
A. J.
Hazel
,
E. T.
Walters
,
C. N.
Rowley
, and
J. C.
Gumbart
,
J. Chem. Phys.
149
,
072317
(
2018
).
6.
V. S.
Inakollu
,
D. P.
Geerke
,
C. N.
Rowley
, and
H.
Yu
,
Curr. Opin. Struct. Biol.
61
,
182
(
2020
).
7.
V. P.
Osinga
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
J. Chem. Phys.
106
,
5091
(
1997
).
8.
J. E.
Jones
,
Proc. R. Soc. London, Ser. A
106
,
463
(
1924
).
9.
R. M.
Levy
,
L. Y.
Zhang
,
E.
Gallicchio
, and
A. K.
Felts
,
J. Am. Chem. Soc.
125
,
9523
(
2003
).
10.
J.
Dzubiella
,
J. M. J.
Swanson
, and
J. A.
McCammon
,
Phys. Rev. Lett.
96
,
087802
(
2006
).
11.
C.
Tan
,
Y.-H.
Tan
, and
R.
Luo
,
J. Phys. Chem. B
111
,
12263
(
2007
).
12.
C. J.
Fennell
,
C.
Kehoe
, and
K. A.
Dill
,
J. Am. Chem. Soc.
132
,
234
(
2010
).
13.
Z.
Bashardanesh
and
D.
van der Spoel
,
J. Phys. Chem. B
122
,
8018
(
2018
).
14.
M.
Mohebifar
,
E. R.
Johnson
, and
C. N.
Rowley
,
J. Chem. Theory Comput.
13
,
6146
(
2017
).
15.
E. T.
Walters
,
M.
Mohebifar
,
E. R.
Johnson
, and
C. N.
Rowley
,
J. Phys. Chem. B
122
,
6690
(
2018
).
16.
R. A.
Buckingham
,
Proc. R. Soc. London, Ser. A
168
,
264
(
1938
).
17.
K. T.
Tang
and
J. P.
Toennies
,
J. Chem. Phys.
80
,
3726
(
1984
).
18.
C. L.
Wennberg
,
T.
Murtola
,
B.
Hess
, and
E.
Lindahl
,
J. Chem. Theory Comput.
9
,
3527
(
2013
).
19.
L.-P.
Wang
,
T. J.
Martinez
, and
V. S.
Pande
,
J. Phys. Chem. Lett.
5
,
1885
(
2014
).
20.
A. V.
Onufriev
and
S.
Izadi
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1347
(
2018
).
21.
J. F.
Ouyang
and
R. P. A.
Bettens
,
CHIMIA Int. J. Chem.
69
,
104
(
2015
).
22.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
23.
H.
Berendsen
,
J.
Postma
,
W.
van Gunsteren
, and
J.
Hermans
, in
Intermolecular Forces
, edited by
B.
Pullman
(
D. Reidel Publishing Company
,
Boston, USA
,
1981
), pp.
331
342
.
24.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
25.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
26.
S.
Izadi
and
A. V.
Onufriev
,
J. Chem. Phys.
145
,
074501
(
2016
).
27.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
28.
M. R.
Shirts
,
D. L.
Mobley
,
J. D.
Chodera
, and
V. S.
Pande
,
J. Phys. Chem. B
111
,
13052
(
2007
).
29.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
,
R. P.
Wiewiora
,
B. R.
Brooks
, and
V. S.
Pande
,
PLoS Comput. Biol.
13
,
e1005659
(
2017
).
30.
M.
Mohebifar
, OpenMM Transformer and B68 Input Files, https://github.com/mohebifar/openmm-transformer,
2020
; accessed 3 December 2019.
31.
I.-C.
Yeh
and
G.
Hummer
,
J. Phys. Chem. B
108
,
15873
(
2004
).
32.
J. M.
Sorenson
,
G.
Hura
,
R. M.
Glaeser
, and
T.
Head-Gordon
,
J. Chem. Phys.
113
,
9149
(
2000
).
33.
D. P.
Fernández
,
A. R. H.
Goodwin
,
E. W.
Lemmon
,
J. M. H.
Levelt Sengers
, and
R. C.
Williams
,
J. Phys. Chem. Ref. Data
26
,
1125
(
1997
).
34.
W.
Wagner
and
A.
Pruß
,
J. Phys. Chem. Ref. Data
31
,
387
(
2002
).
35.
G. S.
Kell
,
J. Chem. Eng. Data
20
,
97
(
1975
).
36.
L.-P.
Wang
,
J.
Chen
, and
T.
Van Voorhis
,
J. Chem. Theory. Comput.
9
,
452
(
2013
).
You do not currently have access to this content.