Molecular interactions are essential for regulation of cellular processes from the formation of multi-protein complexes to the allosteric activation of enzymes. Identifying the essential residues and molecular features that regulate such interactions is paramount for understanding the biochemical process in question, allowing for suppression of a reaction through drug interventions or optimization of a chemical process using bioengineered molecules. In order to identify important residues and information pathways within molecular complexes, the dynamical network analysis method was developed and has since been broadly applied in the literature. However, in the dawn of exascale computing, this method is frequently limited to relatively small biomolecular systems. In this work, we provide an evolution of the method, application, and interface. All data processing and analysis are conducted through Jupyter notebooks, providing automatic detection of important solvent and ion residues, an optimized and parallel generalized correlation implementation that is linear with respect to the number of nodes in the system, and subsequent community clustering, calculation of betweenness of contacts, and determination of optimal paths. Using the popular visualization program visual molecular dynamics (VMD), high-quality renderings of the networks over the biomolecular structures can be produced. Our new implementation was employed to investigate three different systems, with up to 2.5M atoms, namely, the OMP-decarboxylase, the leucyl-tRNA synthetase complexed with its cognate tRNA and adenylate, and respiratory complex I in a membrane environment. Our enhanced and updated protocol provides the community with an intuitive and interactive interface, which can be easily applied to large macromolecular complexes.

1.
M.
Karplus
and
J. A.
McCammon
, “
Protein structural fluctuations during a period of 100 ps
,”
Nature
277
,
578
(
1979
).
2.
A.
Singharoy
,
C.
Maffeo
,
K. H.
Delgado-Magnero
,
D. J. K.
Swainsbury
,
M.
Sener
,
U.
Kleinekathöfer
,
J. W.
Vant
,
J.
Nguyen
,
A.
Hitchcock
,
B.
Isralewitz
 et al., “
Atoms to phenotypes: Molecular design principles of cellular energy metabolism
,”
Cell
179
,
1098
1111
(
2019
).
3.
J. R.
Perilla
,
B. C.
Goh
,
C. K.
Cassidy
,
B.
Liu
,
R. C.
Bernardi
,
T.
Rudack
,
H.
Yu
,
Z.
Wu
, and
K.
Schulten
, “
Molecular dynamics simulations of large macromolecular complexes
,”
Curr. Opin. Struct. Biol.
31
,
64
74
(
2015
).
4.
C.
Abrams
and
G.
Bussi
, “
Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration
,”
Entropy
16
,
163
199
(
2014
).
5.
R. C.
Bernardi
,
M. C. R.
Melo
, and
K.
Schulten
, “
Enhanced sampling techniques in molecular dynamics simulations of biological systems
,”
Biochim. Biophys. Acta, Gen. Subj.
1850
,
872
877
(
2015
).
6.
D.
Fraccalvieri
,
A.
Pandini
,
F.
Stella
, and
L.
Bonati
, “
Conformational and functional analysis of molecular dynamics trajectories by self-organising maps
,”
BMC Bioinf.
12
,
158
(
2011
).
7.
S.
Doerr
,
M. J.
Harvey
,
F.
Noé
, and
G.
De Fabritiis
, “
HTMD: High-throughput molecular dynamics for molecular discovery
,”
J. Chem. Theory Comput.
12
,
1845
1852
(
2016
).
8.
S. M.
Sedlak
,
L. C.
Schendel
,
M. C. R.
Melo
,
D. A.
Pippig
,
Z.
Luthey-Schulten
,
H. E.
Gaub
, and
R. C.
Bernardi
, “
Direction matters: Monovalent streptavidin/biotin complex under load
,”
Nano Lett.
19
,
3415
3421
(
2018
).
9.
R.
Karamzadeh
,
M. H.
Karimi-Jafari
,
A.
Sharifi-Zarchi
,
H.
Chitsaz
,
G. H.
Salekdeh
, and
A. A.
Moosavi-Movahedi
, “
Machine learning and network analysis of molecular dynamics trajectories reveal two chains of red/ox-specific residue interactions in human protein disulfide isomerase
,”
Sci. Rep.
7
,
3666
(
2017
).
10.
Y.
Wang
,
J. M.
Lamim Ribeiro
, and
P.
Tiwary
, “
Machine learning approaches for analyzing and enhancing molecular dynamics simulations
,”
Curr. Opin. Struct. Biol.
61
,
139
145
(
2020
).
11.
T.
Xie
,
A.
France-Lanord
,
Y.
Wang
,
Y.
Shao-Horn
, and
J. C.
Grossman
, “
Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
,”
Nat. Commun.
10
,
2667
(
2019
).
12.
A.
Sethi
,
J.
Eargle
,
A. A.
Black
, and
Z.
Luthey-Schulten
, “
Dynamical networks in tRNA:protein complexes
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
6620
6625
(
2009
).
13.
R. W.
Alexander
,
J.
Eargle
, and
Z.
Luthey-Schulten
, “
Experimental and computational determination of tRNA dynamics
,”
FEBS Lett.
584
,
376
386
(
2010
).
14.
I.
Rivalta
,
M. M.
Sultan
,
N.-S.
Lee
,
G. A.
Manley
,
J. P.
Loria
, and
V. S.
Batista
, “
Allosteric pathways in imidazole glycerol phosphate synthase
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
E1428
E1436
(
2012
).
15.
S.
Stolzenberg
,
M.
Michino
,
M. V.
LeVine
,
H.
Weinstein
, and
L.
Shi
, “
Computational approaches to detect allosteric pathways in transmembrane molecular machines
,”
Biochim. Biophys. Acta, Biomembr.
1858
,
1652
1662
(
2016
).
16.
K. W.
East
,
E.
Skeens
,
J. Y.
Cui
,
H. B.
Belato
,
B.
Mitchell
,
R.
Hsu
,
V. S.
Batista
,
G.
Palermo
, and
G. P.
Lisi
, “
NMR and computational methods for molecular resolution of allosteric pathways in enzyme complexes
,”
Biophys. Rev.
12
,
155
174
(
2019
).
17.
S.
Bowerman
and
J.
Wereszczynski
, “
Detecting allosteric networks using molecular dynamics simulation
,” in
Methods in Enzymology
(
Elsevier
,
2016
), Vol. 578, pp.
429
447
.
18.
M. C. R.
Melo
,
R. C.
Bernardi
,
T.
Rudack
,
M.
Scheurer
,
C.
Riplinger
,
J. C.
Phillips
,
J. D. C.
Maia
,
G. B.
Rocha
,
J. V.
Ribeiro
,
J. E.
Stone
,
F.
Neese
,
K.
Schulten
, and
Z.
Luthey-Schulten
, “
NAMD goes quantum: An integrative suite for hybrid simulations
,”
Nat. Methods
15
,
351
354
(
2018
).
19.
A. T.
Vanwart
,
J.
Eargle
,
Z.
Luthey-Schulten
, and
R. E.
Amaro
, “
Exploring residue component contributions to dynamical network models of allostery
,”
J. Chem. Theory Comput.
8
,
2949
2961
(
2012
).
20.
D.
Thirumalai
,
C.
Hyeon
,
P. I.
Zhuravlev
, and
G. H.
Lorimer
, “
Symmetry, rigidity, and allosteric signaling: From monomeric proteins to molecular machines
,”
Chem. Rev.
119
,
6788
6821
(
2019
).
21.
C.
Schoeler
,
R. C.
Bernardi
,
K. H.
Malinowska
,
E.
Durner
,
W.
Ott
,
E. A.
Bayer
,
K.
Schulten
,
M. A.
Nash
, and
H. E.
Gaub
, “
Mapping mechanical force propagation through biomolecular complexes
,”
Nano Lett.
15
,
7370
7376
(
2015
).
22.
J.
Seppälä
,
R. C.
Bernardi
,
T. J.
Haataja
,
M.
Hellman
,
O. T.
Pentikäinen
,
K.
Schulten
,
P.
Permi
,
J.
Ylänne
, and
U.
Pentikäinen
, “
Skeletal dysplasia mutations effect on human filamins’ structure and mechanosensing
,”
Sci. Rep.
7
,
4218
(
2017
).
23.
L. F.
Milles
,
K.
Schulten
,
H. E.
Gaub
, and
R. C.
Bernardi
, “
Molecular mechanism of extreme mechanostability in a pathogen adhesin
,”
Science
359
,
1527
1533
(
2018
).
24.
S. M.
Sedlak
,
L. C.
Schendel
,
H. E.
Gaub
, and
R. C.
Bernardi
, “
Streptavidin/biotin: Tethering geometry defines unbinding mechanics
,”
Sci. Adv.
6
,
eaay5999
(
2020
).
25.
Z.
Liu
,
H.
Liu
,
A. M.
Vera
,
R. C.
Bernardi
,
P.
Tinnefeld
, and
M. A.
Nash
, “
High force catch bond mechanism of bacterial adhesion in the human gut
,”
Nat. Commun.
11
,
4321
(
2020
).
26.
T.
Verdorfer
,
R. C.
Bernardi
,
A.
Meinhold
,
W.
Ott
,
Z.
Luthey-Schulten
,
M. A.
Nash
, and
H. E.
Gaub
, “
Combining in vitro and in silico single-molecule force spectroscopy to characterize and tune cellulosomal scaffoldin mechanics
,”
J. Am. Chem. Soc.
139
,
17841
17852
(
2017
).
27.
W. B.
Powell
,
P.
Jaillet
, and
A.
Odoni
, “
Stochastic and dynamic networks and routing
,”
Handb. Oper. Res. Manag. Sci.
8
,
141
295
(
1995
).
28.
H.
Wang
,
H.
Xie
,
L.
Qiu
,
Y. R.
Yang
,
Y.
Zhang
, and
A.
Greenberg
, “
Cope: Traffic engineering in dynamic networks
,” in
Proceedings of the 2006 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications
(
Association for Computing Machinery
,
2006
), pp.
99
110
.
29.
S.
Aral
,
L.
Muchnik
, and
A.
Sundararajan
, “
Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
21544
21549
(
2009
).
30.
M. J.
Holliday
,
C.
Camilloni
,
G. S.
Armstrong
,
M.
Vendruscolo
, and
E. Z.
Eisenmesser
, “
Networks of dynamic allostery regulate enzyme function
,”
Structure
25
,
276
286
(
2017
).
31.
J.
Eargle
and
Z.
Luthey-Schulten
, “
NetworkView: 3D display and analysis of protein⋅RNA interaction networks
,”
Bioinformatics
28
,
3000
3001
(
2012
).
32.
V. A.
Feher
,
J. D.
Durrant
,
A. T.
Van Wart
, and
R. E.
Amaro
, “
Computational approaches to mapping allosteric pathways
,”
Curr. Opin. Struct. Biol.
25
,
98
103
(
2014
).
33.
M.
Girvan
and
M. E. J.
Newman
, “
Community structure in social and biological networks
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
7821
7826
(
2002
).
34.
Q.
Cui
and
M.
Karplus
, “
Allostery and cooperativity revisited
,”
Protein Sci.
17
,
1295
1307
(
2008
).
35.
R.
Nussinov
and
C.-J.
Tsai
, “
Allostery in disease and in drug discovery
,”
Cell
153
,
293
305
(
2013
).
36.
H. N.
Motlagh
,
J. O.
Wrabl
,
J.
Li
, and
V. J.
Hilser
, “
The ensemble nature of allostery
,”
Nature
508
,
331
339
(
2014
).
37.
R.
Nussinov
and
C.-J.
Tsai
, “
Allostery without a conformational change? Revisiting the paradigm
,”
Curr. Opin. Struct. Biol.
30
,
17
24
(
2015
).
38.
C.-J.
Tsai
,
A.
del Sol
,
R.
Nussinov
, and
Allostery
, “
Absence of a change in shape does not imply that allostery is not at play
,”
J. Mol. Biol.
378
,
1
11
(
2008
).
39.
A. T.
Van Wart
,
J.
Durrant
,
L.
Votapka
, and
R. E.
Amaro
, “
Weighted implementation of suboptimal paths (WISP): An optimized algorithm and tool for dynamical network analysis
,”
J. Chem. Theory Comput.
10
,
511
517
(
2014
).
40.
A.
del Sol
,
H.
Fujihashi
,
D.
Amoros
, and
R.
Nussinov
, “
Residues crucial for maintaining short paths in network communication mediate signaling in proteins
,”
Mol. Syst. Biol.
2
(
2006
).
41.
R. E.
Amaro
,
A.
Sethi
,
R. S.
Myers
,
V. J.
Davisson
, and
Z. A.
Luthey-Schulten
, “
A network of conserved interactions regulates the allosteric signal in a glutamine amidotransferase
,”
Biochemistry
46
,
2156
2173
(
2007
).
42.
R. W.
Floyd
, “
Algorithm 97: Shortest path
,”
Commun. ACM
5
,
345
(
1962
).
43.
S.
Warshall
, “
A theorem on Boolean matrices
,”
J. ACM
9
,
11
12
(
1962
).
44.
G. M.
Süel
,
S. W.
Lockless
,
M. A.
Wall
, and
R.
Ranganathan
, “
Evolutionarily conserved networks of residues mediate allosteric communication in proteins
,”
Nat. Struct. Biol.
10
,
59
69
(
2003
).
45.
Y.
Miao
,
S. E.
Nichols
,
P. M.
Gasper
,
V. T.
Metzger
, and
J. A.
McCammon
, “
Activation and dynamic network of the M2 muscarinic receptor
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
10982
10987
(
2013
).
46.
P. H.
Hünenberger
,
A. E.
Mark
, and
W. F.
Van Gunsteren
, “
Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations
,”
J. Mol. Biol.
252
,
492
503
(
1995
).
47.
A.
Kraskov
,
H.
Stögbauer
, and
P.
Grassberger
, “
Estimating mutual information
,”
Phys. Rev. E
69
,
066138
(
2004
).
48.
O. F.
Lange
and
H.
Grubmüller
, “
Generalized correlation for biomolecular dynamics
,”
Proteins: Struct., Funct., Genet.
62
,
1053
1061
(
2006
).
49.
T. M.
Cover
and
J. A.
Thomas
,
Elements of Information Theory
(
John Wiley & Sons
,
2012
).
50.
B. C.
Ross
, “
Mutual information between discrete and continuous data sets
,”
PloS One
9
,
e87357
(
2014
).
51.
W.
Humphrey
,
A.
Dalke
,
K.
Schulten
 et al., “
VMD: Visual molecular dynamics
,”
J. Mol. Graph.
14
,
33
38
(
1996
).
52.
J. E.
Stone
, “
Interactive ray tracing techniques for high-fidelity scientific visualization
,” in
Ray Tracing Gems
(
Springer
,
2019
), pp.
493
515
.
53.
B. G.
Miller
and
R.
Wolfenden
, “
Catalytic proficiency: The unusual case of OMP decarboxylase
,”
Annu. Rev. Biochem.
71
,
847
885
(
2002
).
54.
J. K.
Lee
and
K. N.
Houk
, “
A proficient enzyme revisited: The predicted mechanism for orotidine monophosphate decarboxylase
,”
Science
276
,
942
945
(
1997
).
55.
N.
Wu
,
Y.
Mo
,
J.
Gao
, and
E. F.
Pai
, “
Electrostatic stress in catalysis: Structure and mechanism of the enzyme orotidine monophosphate decarboxylase
,”
Proc. Natl. Acad. Sci. U. S. A.
97
,
2017
2022
(
2000
).
56.
J. J.
Burbaum
and
P.
Schimmel
, “
Structural relationships and the classification of aminoacyl-tRNA synthetases
,”
J. Biol. Chem.
266
,
16965
16968
(
1991
).
57.
M.
Ibba
and
D.
Söll
, “
Aminoacyl-tRNA synthesis
,”
Annu. Rev. Biochem.
69
,
617
650
(
2000
).
58.
A.
Palencia
,
T.
Crépin
,
M. T.
Vu
,
T. L.
Lincecum
,
S. A.
Martinis
, and
S.
Cusack
, “
Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase
,”
Nat. Struct. Mol. Biol.
19
,
677
684
(
2012
).
59.
H.
Asahara
,
H.
Himeno
,
K.
Tamura
,
T.
Hasegawa
,
K.
Watanabe
, and
M.
Shimizu
, “
Recognition nucleotides of Escherichia coli tRNALeu and its elements facilitating discrimination from tRNASer and tRNATyr
,”
J. Mol. Biol.
231
,
219
229
(
1993
).
60.
H.
Asahara
,
N.
Nameki
, and
T.
Hasegawa
, “
In vitro selection of RNAs aminoacylated by Escherichia coli leucyl-tRNA synthetase
,”
J. Mol. Biol.
283
,
605
618
(
1998
).
61.
X.
Du
and
E.-D.
Wang
, “
Tertiary structure base pairs between D- and TpsiC-loops of Escherichia coli tRNALeu play important roles in both aminoacylation and editing
,”
Nucleic Acids Res.
31
,
2865
2872
(
2003
).
62.
D. C.
Larkin
,
A. M.
Williams
,
S. A.
Martinis
, and
G. E.
Fox
, “
Identification of essential domains for Escherichia coli tRNAleu aminoacylation and amino acid editing using minimalist RNA molecules
,”
Nucleic Acids Res.
30
,
2103
2113
(
2002
).
63.
Y.
Chaban
,
E. J.
Boekema
, and
N. V.
Dudkina
, “
Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation
,”
Biochim. Biophys. Acta, Bioenerg.
1837
,
418
426
(
2014
).
64.
S.
Dröse
and
U.
Brandt
, “
Molecular mechanisms of superoxide production by the mitochondrial respiratory chain
,” in
Mitochondrial Oxidative Phosphorylation
(
Springer
,
2012
), pp.
145
169
.
65.
D.
Voet
,
J. G.
Voet
, and
C. W.
Pratt
,
Fundamentals of Biochemistry: Life at the Molecular Level
(
VOE
,
2013
), Vol. 577, p.
1
.
66.
R. G.
Efremov
,
R.
Baradaran
, and
L. A.
Sazanov
, “
The architecture of respiratory complex I
,”
Nature
465
,
441
445
(
2010
).
67.
C.
Gupta
,
U.
Khaniya
,
C. K.
Chan
,
F.
Dehez
,
M.
Shekhar
,
M. R.
Gunner
,
L.
Sazanov
,
C.
Chipot
, and
A.
Singharoy
, “
Charge transfer and chemo-mechanical coupling in respiratory complex I
,”
J. Am. Chem. Soc.
142
,
9220
9230
(
2020
).
68.
V. R. I.
Kaila
,
M.
Wikström
, and
G.
Hummer
, “
Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
6988
6993
(
2014
).
69.
V.
Sharma
,
G.
Belevich
,
A. P.
Gamiz-Hernandez
,
T.
Róg
,
I.
Vattulainen
,
M. L.
Verkhovskaya
,
M.
Wikström
,
G.
Hummer
, and
V. R. I.
Kaila
, “
Redox-induced activation of the proton pump in the respiratory complex I
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
11571
11576
(
2015
).
70.
R.
Baradaran
,
J. M.
Berrisford
,
G. S.
Minhas
, and
L. A.
Sazanov
, “
Crystal structure of the entire respiratory complex I
,”
Nature
494
,
443
448
(
2013
).
71.
S. K.
Lam
,
A.
Pitrou
, and
S.
Seibert
, “
Numba
,” in
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC—LLVM ’15
(
ACM Press
,
New York, NY, USA
,
2015
), pp.
1
6
.
72.
C. F. A.
Negre
,
U. N.
Morzan
,
H. P.
Hendrickson
,
R.
Pal
,
G. P.
Lisi
,
J. P.
Loria
,
I.
Rivalta
,
J.
Ho
, and
V. S.
Batista
, “
Eigenvector centrality for characterization of protein allosteric pathways
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
E12201
E12208
(
2018
).
73.
N.
Michaud-Agrawal
,
E. J.
Denning
,
T. B.
Woolf
, and
O.
Beckstein
, “
MDAnalysis: A toolkit for the analysis of molecular dynamics simulations
,”
J. Comput. Chem.
32
,
2319
2327
(
2011
).
74.
R. J.
Gowers
,
M.
Linke
,
J.
Barnoud
,
T. J. E.
Reddy
,
M. N.
Melo
,
S. L.
Seyler
,
D. L.
Dotson
,
J.
Domanski
,
S.
Buchoux
,
I. M.
Kenney
, and
O.
Beckstein
, “
MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations
,” in
Proceedings of the 15th Python in Science Conference
(
2016
), pp.
102
109
.
75.
S.
Behnel
,
R.
Bradshaw
,
C.
Citro
,
L.
Dalcin
,
D. S.
Seljebotn
, and
K.
Smith
, “
Cython: The best of both worlds
,”
Comput. Sci. Eng.
13
,
31
39
(
2011
).
76.
A. A.
Hagberg
,
D. A.
Schult
, and
P. J.
Swart
, “
Exploring network structure, dynamics, and function using NetworkX
,” in
Proceedings of the 7th Python in Science Conference (SciPy2008)
(
2008
), pp.
11
15
.
77.
V. D.
Blondel
,
J.-L.
Guillaume
,
R.
Lambiotte
, and
E.
Lefebvre
, “
Fast unfolding of communities in large networks
,”
J. Stat. Mech.: Theory Exp.
2008
,
P10008
.
78.
J. V.
Ribeiro
,
R. C.
Bernardi
,
T.
Rudack
,
J. E.
Stone
,
J. C.
Phillips
,
P. L.
Freddolino
, and
K.
Schulten
, “
Qwikmd—Integrative molecular dynamics toolkit for novices and experts
,”
Sci. Rep.
6
,
26536
(
2016
).
79.
J. C.
Phillips
,
D. J.
Hardy
,
J. D. C.
Maia
,
J. E.
Stone
,
J. V.
Ribeiro
,
R. C.
Bernardi
,
R.
Buch
,
G.
Fiorin
,
J.
Hénin
,
W.
Jiang
 et al., “
Scalable molecular dynamics on CPU and GPU architectures with NAMD
,”
J. Chem. Phys.
153
,
044130
(
2020
).
80.
R. B.
Best
,
X.
Zhu
,
J.
Shim
,
P. E. M.
Lopes
,
J.
Mittal
,
M.
Feig
, and
A. D.
MacKerell
, Jr.
, “
Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles
,”
J. Chem. Theory Comput.
8
,
3257
3273
(
2012
).
81.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
82.
R.
Bernardi
,
M.
Bhandarkar
,
A.
Bhatele
,
E.
Bohm
,
R.
Brunner
,
F.
Buelens
,
C.
Chipot
,
A.
Dalke
,
S.
Dixit
,
G.
Fiorin
,
P.
Freddolino
,
H.
Fu
,
P.
Grayson
,
J.
Gullingsrud
,
A.
Gursoy
,
D.
Hardy
,
C.
Harrison
,
J.
Hénin
,
W.
Humphrey
,
D.
Hurwitz
,
A.
Hynninen
,
N.
Jain
,
N.
Krawetz
,
S.
Kumar
,
D.
Kunzman
,
J.
Lai
,
C.
Lee
,
J.
Maia
,
R.
McGreevy
,
C.
Mei
,
M.
Melo
,
M.
Nelson
,
J.
Phillips
,
B.
Radak
,
T.
Rudack
,
O.
Sarood
,
A.
Shinozaki
,
D.
Tanner
,
D.
Wells
,
G.
Zheng
, and
F.
Zhu
, “
NAMD user’s guide
,” in
Theoretical Biophysics Group
(
University of Illinois and Beckman Institute
,
Urbana, IL
,
2018
).
83.
M.
Fujihashi
,
A. M.
Bello
,
E.
Poduch
,
L.
Wei
,
S. C.
Annedi
,
E. F.
Pai
, and
L. P.
Kotra
, “
An unprecedented twist to ODcase catalytic activity
,”
J. Am. Chem. Soc.
127
,
15048
15050
(
2005
).
84.
M.
Popenda
,
M.
Szachniuk
,
M.
Antczak
,
K. J.
Purzycka
,
P.
Lukasiak
,
N.
Bartol
,
J.
Blazewicz
, and
R. W.
Adamiak
, “
Automated 3D structure composition for large RNAs
,”
Nucleic Acids Res.
40
,
e112
(
2012
).
85.
N.
Eswar
,
D.
Eramian
,
B.
Webb
,
M.-Y.
Shen
, and
A.
Sali
, “
Protein structure modeling with modeller
,” in
Structural Proteomics
(
Springer
,
2008
), pp.
145
159
.
86.
T. P.
Begley
,
T. C.
Appleby
, and
S. E.
Ealick
, “
The structural basis for the remarkable catalytic proficiency of orotidine 5′-monophosphate decarboxylase
,”
Curr. Opin. Struct. Biol.
10
,
711
718
(
2000
).
87.
G.
Tocchini-Valentini
,
M. E.
Saks
, and
J.
Abelson
, “
tRNA leucine identity and recognition sets
,”
J. Mol. Biol.
298
,
779
793
(
2000
).
88.
Z.
Yang
,
R.
Algesheimer
, and
C. J.
Tessone
, “
A comparative analysis of community detection algorithms on artificial networks
,”
Sci. Rep.
6
,
30750
(
2016
).
89.
Y.
Mechulam
,
F.
Dardel
,
D.
Le Corre
,
S.
Blanquet
, and
G.
Fayat
, “
Lysine 335, part of the KMSKS signature sequence, plays a crucial role in the amino acid activation catalysed by the methionyl-tRNA synthetase from Escherichia coli
,”
J. Mol. Biol.
217
,
465
475
(
1991
).
90.
C.
Hountondji
,
P.
Dessen
, and
S.
Blanquet
, “
The SKS of the KMSKS signature of class I aminoacyl-tRNA synthetases corresponds to the GKT/S sequence characteristic of the ATP-binding site of many proteins
,”
Biochimie
75
,
1137
1142
(
1993
).
91.
E. A.
First
and
A. R.
Fersht
, “
Analysis of the role of the KMSKS loop in the catalytic mechanism of the tyrosyl-tRNA synthetase using multimutant cycles
,”
Biochemistry
34
,
5030
5043
(
1995
).
92.
C.
Hountondji
,
C.
Lazennec
,
C.
Beauvallet
,
P.
Dessen
,
J.-C.
Pernollet
,
P.
Plateau
, and
S.
Blanquet
, “
Crucial role of conserved lysine 277 in the fidelity of tRNA aminoacylation by Escherichia coli valyl-tRNA synthetase
,”
Biochemistry
41
,
14856
14865
(
2002
).
93.
Y. S.
Mendes
,
N. S.
Alves
,
T. L. F.
Souza
,
I. P.
Sousa
, Jr.
,
M. L.
Bianconi
,
R. C.
Bernardi
,
P. G.
Pascutti
,
J. L.
Silva
,
A. M. O.
Gomes
, and
A. C.
Oliveira
, “
The structural dynamics of the Flavivirus fusion peptide–membrane interaction
,”
PLoS One
7
,
e47596
(
2012
).
94.
G.
Licari
,
K.
Strakova
,
S.
Matile
, and
E.
Tajkhorshid
, “
Twisting and tilting of a mechanosensitive molecular probe detects order in membranes
,”
Chem. Sci.
11
,
5637
(
2020
).
95.
L. V. B.
Hoelz
,
R. C.
Bernardi
,
B. A. C.
Horta
,
J. Q.
Araújo
,
M. G.
Albuquerque
,
J. F. M.
da Silva
,
P. G.
Pascutti
, and
R. B.
de Alencastro
, “
Dynamical behaviour of the human β1-adrenoceptor under agonist binding
,”
Mol. Simul.
37
,
907
913
(
2011
).
96.
W.
Liu
,
E.
Chun
,
A. A.
Thompson
,
P.
Chubukov
,
F.
Xu
,
V.
Katritch
,
G. W.
Han
,
C. B.
Roth
,
L. H.
Heitman
,
A. P.
IJzerman
 et al., “
Structural basis for allosteric regulation of GPCRs by sodium ions
,”
Science
337
,
232
236
(
2012
).
97.
L. V. B.
Hoelz
,
A. A. S. T.
Ribeiro
,
R. C.
Bernardi
,
B. A. C.
Horta
,
M. G.
Albuquerque
,
J. F. M.
da Silva
,
P. G.
Pascutti
, and
R. B.
de Alencastro
, “
The role of helices 5 and 6 on the human β1-adrenoceptor activation mechanism
,”
Mol. Simul.
38
,
236
240
(
2012
).
98.
M. P.
Muller
,
T.
Jiang
,
C.
Sun
,
M.
Lihan
,
S.
Pant
,
P.
Mahinthichaichan
,
A.
Trifan
, and
E.
Tajkhorshid
, “
Characterization of lipid–protein interactions and lipid-mediated modulation of membrane protein function through molecular simulation
,”
Chem. Rev.
119
,
6086
6161
(
2019
).
99.
R. C.
Bernardi
and
P. G.
Pascutti
, “
Hybrid QM/MM molecular dynamics study of benzocaine in a membrane environment: How does a quantum mechanical treatment of both anesthetic and lipids affect their interaction
,”
J. Chem. Theory Comput.
8
,
2197
2203
(
2012
).

Supplementary Material

You do not currently have access to this content.