Improving the efficiency of photo-electrocatalytic cells depends on controlling the rates of interfacial electron transfer to promote the formation of long-lived charge separated states. Ultimately, for efficient catalytic assemblies to see widespread implementation, repeated electron transfer in the absence of charge recombination needs to be realized. In this study, a series of manganese-based transition metal complexes known to undergo charge transfer-induced spin crossover are employed to study how significant increases in inner-sphere reorganization energy affect the rates of interfacial electron transfer. Each complex is characterized by transient spectroscopic and electrochemical methods to calculate the rate of electron transfer to a model chromophore anchored to the surface of a TiO2 film. Likewise, open-circuit voltage decay measurements were used to determine the voltage-dependent lifetime of injected electrons in TiO2 in the presence of each complex. To further characterize the rates of electronic recombination, density functional theory was used to calculate the inner-sphere and outer-sphere reorganization energy for each complex. These calculations were then combined with classical Marcus theory to determine the theoretical rate of back-electron transfer from the TiO2 conduction band. These results show that, in model complexes, a significant reduction in the recombination rate constant is achieved for complexes possessing a significant inner-sphere reorganization energy.

1.
M. I.
Hoffert
 et al,
Nature
395
,
881
(
1998
).
2.
L.
Hammarström
,
Curr. Opin. Chem. Biol.
7
,
666
(
2003
).
3.
L.
Sun
 et al,
Chem. Soc. Rev.
30
,
36
(
2001
).
4.
L.
Duan
 et al,
Energy Environ. Sci.
4
,
3296
(
2011
).
5.
B. D.
Sherman
 et al,
Energy Environ. Sci.
9
,
1812
(
2016
).
6.
M. T.
Rawls
,
J.
Johnson
, and
B. A.
Gregg
,
J. Electroanal. Chem.
650
,
10
(
2010
).
7.
F.
Li
 et al,
J. Am. Chem. Soc.
137
,
9153
(
2015
).
8.
S. A.
Sapp
 et al,
J. Am. Chem. Soc.
124
,
11215
(
2002
).
9.
Y.
Xie
 et al,
J. Phys. Chem. C
119
,
28155
(
2015
).
10.
E.
Mosconi
 et al,
J. Am. Chem. Soc.
134
,
19438
(
2012
).
11.
M. J.
DeVries
,
M. J.
Pellin
, and
J. T.
Hupp
,
Langmuir
26
,
9082
(
2010
).
12.
A.
Paul
 et al,
ACS Omega
4
,
14780
(
2019
).
13.
R.
Matheu
 et al,
Nat. Rev. Chem.
3
,
331
(
2019
).
14.
L.
Tong
and
R. P.
Thummel
,
Chem. Sci.
7
,
6591
(
2016
).
15.
F.
Hossain
 et al,
Inorg. Chem.
46
,
2596
(
2007
).
16.
M. C.
Kessinger
 et al,
J. Phys. Chem. C
122
,
14135
(
2018
).
17.
S.
Trofimenko
,
Chem. Rev.
93
,
943
(
1993
).
18.
H.
Pfeiffer
 et al,
Dalton Trans.
2009
,
4292
.
19.
V. V.
Pavlishchuk
and
A. W.
Addison
,
Inorg. Chim. Acta
298
,
97
(
2000
).
20.
P. J.
Bailey
 et al,
Chem. - Eur. J.
16
,
2819
(
2010
).
21.
A. J.
Haring
 et al,
ACS Appl. Mater. Interfaces
6
,
15061
(
2014
).
22.
D.
Martini
 et al,
Inorg. Chim. Acta
333
,
72
(
2002
).
23.
L. H.
Uppadine
 et al,
J. Chem. Soc., Dalton Trans.
2001
,
2188
.
24.
M. J.
Frisch
 et al, GAUSSIAN 09, Gaussian, Inc., Wallingford, CT, 2016.
25.
V.
Vaissier
 et al,
Phys. Chem. Chem. Phys.
15
,
4804
(
2013
).
26.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical Methods: Fundamentals and Applications
, 2nd ed. (
Wiley
,
New York
,
2001
).
27.
T.
Daeneke
 et al,
J. Am. Chem. Soc.
134
,
16925
(
2012
).
28.
A. C.
Bhasikuttan
 et al,
J. Am. Chem. Soc.
124
,
8398
(
2002
).
29.
R. M.
O’Donnell
 et al,
J. Phys. Chem. C
118
,
16976
(
2014
).
30.
R. N.
Sampaio
 et al,
ACS Energy Lett.
2
,
2402
(
2017
).
31.
A.
Zaban
 et al,
ChemPhysChem
4
,
859
(
2003
).
32.
J. W.
Ondersma
and
T. W.
Hamann
,
J. Am. Chem. Soc.
133
,
8264
(
2011
).
33.
I.
Krivokapic
 et al,
Coord. Chem. Rev.
251
,
364
(
2007
).
34.
S.
Sreekantan Nair Lalithambika
 et al,
Inorg. Chem.
58
,
4731
(
2019
).
35.
T. W.
Hamann
 et al,
J. Am. Chem. Soc.
127
,
13949
(
2005
).
36.
P.
Suppan
, in
Photoinduced Electron Transfer IV
, edited by
J.
Mattay
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1992
), p.
95
.

Supplementary Material

You do not currently have access to this content.