Relaxation spectra of molecular glass formers devoid of secondary relaxation maxima, as measured by dielectric spectroscopy (DS), nuclear magnetic resonance (NMR) relaxometry, photon correlation spectroscopy (PCS), and Fabry–Perot interferometry, are quantitatively compared in terms of the Kohlrausch stretching parameter βK. For a reliable estimate of βK, the excess wing contribution has to be included in the spectral analysis. The relaxation stretching probed by PCS and NMR varies only weakly among the liquids (βK = 0.58 ± 0.06). It is similar to that found in DS, provided that the liquid is sufficiently nonpolar (relaxation strength Δε6). For larger strengths, larger βKDS (narrowed relaxation spectra) are found when compared to those reported from NMR and PCS. Frequency–temperature superposition (FTS) holds for PCS and NMR. This is demonstrated by data scaling and, for the few glass formers for which results are available, by the equivalence of the susceptibilities χPCSωτχNMRτχNMRω, i.e., measuring at a constant frequency is equivalent to measuring at a constant temperature or constant correlation time. In this context, a plot of the spin–lattice relaxation rate R1(T) as a function of the spin–spin relaxation rate R2(T) is suggested to reveal the stretching parameter without the need to perform frequency-dependent investigations. Dielectrically, we identify a trend of increasing deviations from FTS with increasing Δε. Depending on the technique and glass former, the relative relaxation strength of the excess wing varies, whereas its exponent appears to be method independent for a given substance. For polar liquids, we discuss possible reasons for the discrepancy between the results from PCS and NMR as compared to those from DS.

1.
P.
Lunkenheimer
,
U.
Schneider
,
R.
Brand
, and
A.
Loid
, “
Glassy dynamics
,”
Contemp. Phys.
41
,
15
(
2000
).
2.
G.
Hinze
,
D. D.
Brace
,
S. D.
Gottke
, and
M. D.
Fayer
, “
A detailed test of mode-coupling theory on all time scales: Time domain studies of structural relaxation in a supercooled liquid
,”
J. Chem. Phys.
113
,
3723
(
2000
).
3.
A.
Tölle
, “
Neutron scattering studies of the model glass former ortho-terphenyl
,”
Rep. Prog. Phys.
64
,
1473
(
2001
).
4.
K.
Binder
and
W.
Kob
,
Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics
(
World Scientific
,
New Jersey
,
2005
).
5.
T.
Blochowicz
,
A.
Brodin
, and
E. A.
Rössler
, “
Evolution of the dynamic susceptibility in supercooled liquids and glasses
,” in
Advances in Chemical Physics: Fractals, Diffusion, and Relaxation in Disordered Complex Systems
, edited by
W. T.
Coffey
and
Y. P.
Kalmykov
(
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2006
), Vol. 133, p.
127
.
6.
G.
Floudas
,
M.
Paluch
,
A.
Grzybowski
, and
K.
Ngai
,
Molecular Dynamics of Glass-Forming Systems: Effects of Pressure
(
Springer
,
Berlin, Heidelberg
,
2011
).
7.
P. G.
Wolynes
and
V.
Lubchenko
,
Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications
(
Wiley
,
Hoboken, NJ
,
2012
).
8.
N.
Petzold
,
B.
Schmidtke
,
R.
Kahlau
,
D.
Bock
,
R.
Meier
,
B.
Micko
,
D.
Kruk
, and
E. A.
Rössler
, “
Evolution of the dynamic susceptibility in molecular glass formers: Results from light scattering, dielectric spectroscopy, and NMR
,”
J. Chem. Phys.
138
,
12A510
(
2013
).
9.
K.
Niss
and
T.
Hecksher
, “
Perspective: Searching for simplicity rather than universality in glass-forming liquids
,”
J. Chem. Phys.
149
,
230901
(
2018
).
10.
R.
Böhmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
, “
Nonexponential relaxations in strong and fragile glass formers
,”
J. Chem. Phys.
99
,
4201
(
1993
).
11.
B.
Schmidtke
,
N.
Petzold
,
B.
Pötzschner
,
H.
Weingärtner
, and
E. A.
Rössler
, “
Relaxation stretching, fast dynamics, and activation energy: A comparison of molecular and ionic liquids as revealed by depolarized light scattering
,”
J. Phys. Chem. B
118
,
7108
(
2014
).
12.
A. I.
Nielsen
,
T.
Christensen
,
B.
Jakobsen
,
K.
Niss
,
N. B.
Olsen
,
R.
Richert
, and
J. C.
Dyre
, “
Prevalence of approximate square root(t) relaxation for the dielectric alpha process in viscous organic liquids
,”
J. Chem. Phys.
130
,
154508
(
2009
).
13.
S. P.
Bierwirth
,
R.
Böhmer
, and
C.
Gainaru
, “
Generic primary mechanical response of viscous liquids
,”
Phys. Rev. Lett.
119
,
248001
(
2017
).
14.
C.
Gainaru
, “
Spectral shape simplicity of viscous materials
,”
Phys. Rev. E
100
,
020601
(
2019
).
15.
M.
Paluch
,
J.
Knapik
,
Z.
Wojnarowska
,
A.
Grzybowski
, and
K. L.
Ngai
, “
Universal behavior of dielectric responses of glass formers: Role of dipole-dipole interactions
,”
Phys. Rev. Lett.
116
,
025702
(
2016
).
16.
T.
Blochowicz
,
C.
Tschirwitz
,
S.
Benkhof
, and
E. A.
Rössler
, “
Susceptibility functions for slow relaxation processes in supercooled liquids and the search for universal relaxation patterns
,”
J. Chem. Phys.
118
,
7544
(
2003
).
17.
T.
Blochowicz
,
C.
Gainaru
,
P.
Medick
,
C.
Tschirwitz
, and
E. A.
Rössler
, “
The dynamic susceptibility in glass forming molecular liquids: The search for universal relaxation patterns II
,”
J. Chem. Phys.
124
,
134503
(
2006
).
18.
C. J. F.
Böttcher
and
P.
Bordewijk
,
Dielectrics in Time-Dependent Fields
, 2nd completely revised edition (
Elsevier
,
Amsterdam
,
1978
).
19.
R.
Böhmer
,
G.
Diezemann
,
G.
Hinze
, and
E.
Rössler
, “
Dynamics of supercooled liquids and glassy solids
,”
Prog. Nucl. Magn. Reson. Spectrosc.
39
,
191
(
2001
).
20.
G.
Williams
, “
Molecular motion in glass-forming systems
,”
J. Non-Cryst. Solids
131-133
,
1
(
1991
).
21.
H. Z.
Cummins
,
G.
Li
,
Y. H.
Hwang
,
G. Q.
Shen
,
W. M.
Du
,
J.
Hernandez
, and
N. J.
Tao
, “
Dynamics of supercooled liquids and glasses: Comparison of experiments with theoretical predictions
,”
Z. Phys. B
103
,
501
(
1997
).
22.
W.
Götze
, “
Recent tests of the mode-coupling theory for glassy dynamics
,”
J. Phys.: Condens. Matter
11
,
A1
A45
(
1999
).
23.
A.
Aouadi
,
C.
Dreyfus
,
M.
Massot
,
R. M.
Pick
,
T.
Berger
,
W.
Steffen
,
A.
Patkowski
, and
C.
Alba-Simionesco
, “
Light scattering study of the liquid–glass transition of meta-toluidine
,”
J. Chem. Phys.
112
,
9860
(
2000
).
24.
G.
Fytas
and
T.
Dorfmüller
, “
Photon correlation spectroscopy of liquid 2,4-pentanediol near the glass point
,”
Mol. Phys.
47
,
741
(
1982
).
25.
D. L.
Sidebottom
and
C. M.
Sorensen
, “
Light scattering study of the glass transition in salol
,”
Phys. Rev. B
40
,
461
(
1989
).
26.
A.
Patkowski
,
M.
Paluch
, and
H.
Kriegs
, “
Dynamic light scattering studies of supercooled phenylphthalein–dimethylether dynamics under high pressure
,”
J. Chem. Phys.
117
,
2192
(
2002
).
27.
J.
Gabriel
,
F.
Pabst
, and
T.
Blochowicz
, “
Debye process and β-relaxation in 1-propanol probed by dielectric spectroscopy and depolarized dynamic light scattering
,”
J. Phys. Chem. B
121
,
8847
(
2017
).
28.
J.
Gabriel
,
F.
Pabst
,
A.
Helbling
,
T.
Böhmer
, and
T.
Blochowicz
, “
Nature of the Debye-process in monohydroxy alcohols: 5-methyl-2-hexanol investigated by depolarized light scattering and dielectric spectroscopy
,”
Phys. Rev. Lett.
121
,
035501
(
2018
).
29.
R.
Torre
,
P.
Bartolini
, and
R.
Pick
, “
Time-resolved optical Kerr effect in a fragile glass-forming liquid, salol
,”
Phys. Rev. E
57
,
1912
(
1998
).
30.
H.
Cang
,
V. N.
Novikov
, and
M. D.
Fayer
, “
Logarithmic decay of the orientational correlation function in supercooled liquids on the ps to ns time scale
,”
J. Chem. Phys.
118
,
2800
(
2003
).
31.
S.
Kinoshita
,
Y.
Kai
,
M.
Yamaguchi
, and
T.
Yagi
, “
Direct comparison between ultrafast optical Kerr effect and high-resolution light scattering spectroscopy
,”
Phys. Rev. Lett.
75
,
148
(
1995
).
32.
A.
Brodin
and
E. A.
Rössler
, “
Depolarized light scattering versus optical Kerr effect. II. Insight into the dynamic susceptibility of molecular liquids
,”
J. Chem. Phys.
126
,
244508
(
2007
).
33.
D.
Kivelson
and
P.
Madden
, “
Theory of dielectric relaxation
,”
Mol. Phys.
30
,
1749
(
1975
).
34.
A.
Patkowski
,
W.
Steffen
,
H.
Nilgens
,
E. W.
Fischer
, and
R.
Pecora
, “
Depolarized dynamic light scattering from three low molecular weight glass forming liquids: A test of the scattering mechanism
,”
J. Chem. Phys.
106
,
8401
(
1997
).
35.
J. P.
Gabriel
,
P.
Zourchang
,
F.
Pabst
,
A.
Helbling
,
P.
Weigl
,
T.
Böhmer
, and
T.
Blochowicz
, “
Intermolecular cross-correlations in the dielectric response of glycerol
,”
Phys. Chem. Chem. Phys.
22
,
11644
(
2020
).
36.
A.
Kudlik
,
S.
Benkhof
,
T.
Blochowicz
,
C.
Tschirwitz
, and
E.
Rössler
, “
The dielectric response of simple organic glass formers
,”
J. Mol. Struct.
479
,
201
(
1999
).
37.
U.
Schneider
,
R.
Brand
,
P.
Lunkenheimer
, and
A.
Loidl
, “
Excess wing in the dielectric loss of glass formers: A Johari–Goldstein β relaxation?
,”
Phys. Rev. Lett.
84
,
5560
(
2000
).
38.
C.
Gainaru
,
O.
Lips
,
A.
Troshagina
,
R.
Kahlau
,
A.
Brodin
,
F.
Fujara
, and
E. A.
Rössler
, “
On the nature of the high-frequency relaxation in a molecular glass former: A joint study of glycerol by field cycling NMR, dielectric spectroscopy, and light scattering
,”
J. Chem. Phys.
128
,
174505
(
2008
).
39.
M.
Flämig
,
M.
Hofmann
,
N.
Fatkullin
, and
E. A.
Rössler
, “
NMR relaxometry: The canonical case glycerol
,”
J. Phys. Chem. B
124
,
1557
(
2020
).
40.
A.
Jedrzejowska
,
K. L.
Ngai
, and
M.
Paluch
, “
Modifications of structure and intermolecular potential of a canonical glassformer: Dynamics changing with dipole-dipole interaction
,”
J. Phys. Chem. A
120
,
8781
(
2016
).
41.
K.
Duvvuri
and
R.
Richert
, “
Dynamics of glass-forming liquids. VI. Dielectric relaxation study of neat decahydro-naphthalene
,”
J. Chem. Phys.
117
,
4414
(
2002
).
42.
A.
Minecka
,
E.
Kaminska
,
D.
Heczko
,
M.
Tarnacka
,
I.
Grudzka-Flak
,
M.
Bartoszek
,
A.
Zięba
,
R.
Wrzalik
,
W. E.
Śmiszek-Lindert
,
M.
Dulski
,
K.
Kaminski
, and
M.
Paluch
, “
Studying molecular dynamics of the slow, structural, and secondary relaxation processes in series of substituted ibuprofens
,”
J. Chem. Phys.
148
,
224505
(
2018
).
43.
T.
Körber
,
F.
Krohn
,
C.
Neuber
,
H.-W.
Schmidt
, and
E. A.
Rössler
, “
Main and secondary relaxations of non-polymeric high-Tg glass formers as revealed by dielectric spectroscopy
,”
Phys. Chem. Chem. Phys.
22
,
9086
(
2020
).
44.
K. L.
Ngai
and
M.
Paluch
, “
Classification of secondary relaxation in glass-formers based on dynamic properties,
J. Chem. Phys.
120
,
857
(
2004
).
45.
M.
Vogel
,
P.
Medick
, and
E. A.
Rössler
, “
Secondary relaxation processes in molecular glasses studied by nuclear magnetic resonance spectroscopy
,” in
Annual Reports on NMR Spectroscopy
, edited by
G. A.
Webb
(
Academic Press
,
2005
), Vol. 56, p.
231
.
46.
A.
Brodin
,
C.
Gainaru
,
V.
Porokhonskyy
, and
E. A.
Rössler
, “
Evolution of dynamic susceptibility in molecular glass formers—A critical assessment
,”
J. Phys.: Condens. Matter
19
,
205104
(
2007
).
47.
P. K.
Dixon
,
L.
Wu
,
S. R.
Nagel
,
B. D.
Williams
, and
J. P.
Carini
, “
Scaling in the relaxation of supercooled liquids
,”
Phys. Rev. Lett.
65
,
1108
(
1990
).
48.
A.
Kudlik
,
S.
Benkhof
,
R.
Lenk
, and
E.
Rössler
, “
Spectral shape of the α-process in supercooled liquids revisited
,”
Europhys. Lett.
32
,
511
(
1995
).
49.
R. L.
Leheny
,
N.
Menon
, and
S. R.
Nagel
, “
Comment on ‘Spectral shape of the α-process in supercooled liquids revisited’
,”
Europhys. Lett.
36
,
473
(
1996
).
50.
A.
Kudlik
,
T.
Blochowicz
,
S.
Benkhof
, and
E.
Rössler
, “
Reply to Comment on ‘Spectral shape of the α-process in supercooled liquids revisited’
,”
Europhys. Lett.
36
,
475
(
1996
).
51.
C.
Gainaru
,
R.
Kahlau
,
E. A.
Rössler
, and
R.
Böhmer
, “
Evolution of excess wing and β-process in simple glass formers
,”
J. Chem. Phys.
131
,
184510
(
2009
).
52.
C.
Gainaru
,
R.
Böhmer
,
R.
Kahlau
, and
E.
Rössler
, “
Energy landscape in molecular glasses probed by high-resolution dielectric experiments
,”
Phys. Rev. B
82
,
104205
(
2010
).
53.

The use of a mastercurve is particularly important for o-terphenyl because the high-precision bridge covers only three decades in frequency.

54.
D. L.
Sidebottom
,
B. V.
Rodenburg
, and
J. R.
Changstrom
, “
Connecting structure and dynamics in glass forming materials by photon correlation spectroscopy
,”
Phys. Rev. B
75
,
132201
(
2007
).
55.
G.
Fytas
,
T.
Dorfmüller
, and
C. H.
Wang
, “
Pressure- and temperature-dependent homodyne photon correlation studies of liquid o-terphenyl in the supercooled state
,”
J. Phys. Chem.
87
,
5041
(
1983
).
56.
R.
Richert
,
K.
Duvvuri
, and
L.-T.
Duong
, “
Dynamics of glass-forming liquids. VII. Dielectric relaxation of supercooled tris-naphthylbenzene, squalane, and decahydroisoquinoline
,”
J. Chem. Phys.
118
,
1828
(
2003
).
57.
X. R.
Zhu
and
C. H.
Wang
, “
Homodyne photon-correlation spectroscopy of a supercooled liquid: 1,3,5-tri-α-naphthyl benzene
,”
J. Chem. Phys.
84
,
6086
(
1986
).
58.
J.
Hintermeyer
,
A.
Herrmann
,
R.
Kahlau
,
C.
Goiceanu
, and
E. A.
Rössler
, “
Molecular weight dependence of glassy dynamics in linear polymers revisited
,”
Macromolecules
41
,
9335
(
2008
).
59.
G.
Meier
,
B.
Gerharz
,
D.
Boese
, and
E. W.
Fischer
, “
Dynamical processes in organic glassforming van der Waals liquids
,”
J. Chem. Phys.
94
,
3050
(
1991
).
60.
A.
Patkowski
,
J.
Gapinski
, and
G.
Meier
, “
Dynamics of supercooled van der Waals liquid under pressure. A dynamic light scattering study
,”
Colloid Polym. Sci.
282
,
874
(
2004
).
61.
C. H.
Wang
,
R. J.
Ma
,
G.
Fytas
, and
T.
Dorfmüller
, “
Laser light scattering studies of the dynamics of molecular reorientation of a viscoelastic liquid: α-Phenyl o-cresol
,”
J. Chem. Phys.
78
,
5863
(
1983
).
62.
C.
Gainaru
,
A.
Rivera
,
S.
Putselyk
,
G.
Eska
, and
E. A.
Rössler
, “
Low-temperature dielectric relaxation of molecular glasses: Crossover from the nearly constant loss to the tunneling regime
,”
Phys. Rev. B
72
,
174203
(
2005
).
63.
S.
Benkhof
and
E. A.
Rössler
, “
Relaxation data of Salol
” (unpublished).
64.
A.
Brodin
,
R.
Bergman
,
J.
Mattsson
, and
E. A.
Rössler
, “
Light scattering and dielectric manifestations of secondary relaxations in molecular glassformers
,”
Eur. Phys. J. B
36
,
349
(
2003
).
65.
L.
Comez
,
S.
Corezzi
,
D.
Fioretto
,
H.
Kriegs
,
A.
Best
, and
W.
Steffen
, “
Slow dynamics of salol: A pressure- and temperature-dependent light scattering study
,”
Phys. Rev. E
70
,
011504
(
2004
).
66.
B.
Schmidtke
,
N.
Petzold
,
R.
Kahlau
, and
E. A.
Rössler
, “
Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: From boiling point to glass transition temperature
,”
J. Chem. Phys.
139
,
084504
(
2013
).
67.
T.
Körber
,
R.
Minikejew
,
B.
Pötzschner
,
D.
Bock
, and
E. A.
Rössler
, “
Dynamically asymmetric binary glass formers studied by dielectric and NMR spectroscopy
,”
Eur. Phys. J. E
42
,
143
(
2019
).
68.
L.
Comez
,
D.
Fioretto
,
L.
Palmieri
,
L.
Verdini
,
P. A.
Rolla
,
J.
Gapinski
,
T.
Pakula
,
A.
Patkowski
,
W.
Steffen
, and
E. W.
Fischer
, “
Light-scattering study of a supercooled epoxy resin
,”
Phys. Rev. E
60
,
3086
(
1999
).
69.
F.
Qi
,
T.
El Goresy
,
R.
Böhmer
,
A.
Döß
,
G.
Diezemann
,
G.
Hinze
,
H.
Sillescu
,
T.
Blochowicz
,
C.
Gainaru
,
E.
Rössler
, and
H.
Zimmermann
, “
Nuclear magnetic resonance and dielectric spectroscopy of a simple supercooled liquid: 2-methyl tetrahydrofuran
,”
J. Chem. Phys.
118
,
7431
(
2003
).
70.
R.
Kahlau
,
T.
Dörfler
, and
E. A.
Rössler
, “
Secondary relaxations in a series of organic phosphate glasses revealed by dielectric spectroscopy
,”
J. Chem. Phys.
139
,
134504
(
2013
).
71.
F.
Pabst
,
A.
Helbling
,
J.
Gabriel
,
P.
Weigl
, and
T.
Blochowicz
, “
Dipole-dipole correlations and the Debye-process in the dielectric response of non-associating glass forming liquids
,”
Phys. Rev. E
102
,
010606
(
2020
).
72.
S.
Adishchev
,
D.
Bock
,
C.
Gainaru
,
R.
Kahlau
,
B.
Micko
,
N.
Petzold
,
B.
Pötzschner
, and
E. A.
Rössler
, “
Reorientational dynamics of organophosphate glass formers—A joint study by 31P NMR, dielectric spectroscopy and light scattering
,”
Z. Phys. Chem.
226
,
1149
(
2012
).
73.
D.
Bock
,
R.
Kahlau
,
B.
Micko
,
B.
Pötzschner
,
G. J.
Schneider
, and
E. A.
Rössler
, “
On the cooperative nature of the β-process in neat and binary glasses: A dielectric and nuclear magnetic resonance spectroscopy study
,”
J. Chem. Phys.
139
,
064508
(
2013
).
74.
P.
Lunkenheimer
,
A.
Pimenov
,
B.
Schiener
,
R.
Böhmer
, and
A.
Loidl
, “
High-frequency dielectric spectroscopy on glycerol
,”
Europhys. Lett.
33
,
611
(
1996
).
75.
K. L.
Ngai
and
R. W.
Rendell
, “
Comparison between frequency-dependent specific heat and dielectric relaxation of glycerol and propylene glycol
,”
Phys. Rev. B
41
,
754
(
1990
).
76.
C. A.
Angell
and
D. L.
Smith
, “
Test of the entropy basis of the Vogel–Tammann–Fulcher equation: Dielectric relaxation of polyalcohols near Tg
,”
J. Phys. Chem.
86
,
3845
(
1982
).
77.
A.
Brodin
and
E. A.
Rössler
, “
Depolarized light scattering study of glycerol
,”
Eur. Phys. J. B
44
,
3
(
2005
).
78.
M.
Flämig
,
M.
Becher
,
M.
Hofmann
,
T.
Körber
,
B.
Kresse
,
A. F.
Privalov
,
L.
Willner
,
D.
Kruk
,
F.
Fujara
, and
E. A.
Rössler
, “
Perspectives of deuteron field-cycling NMR relaxometry for probing molecular dynamics in soft matter
,”
J. Phys. Chem. B
120
,
7754
(
2016
).
79.
W.
Schnauss
,
F.
Fujara
, and
H.
Sillescu
, “
The molecular dynamics around the glass transition and in the glassy state of molecular organic systems: A 2H-nuclear magnetic resonance (NMR) study
,”
J. Chem. Phys.
97
,
1378
(
1992
).
80.
D.
Kruk
,
R.
Meier
, and
E. A.
Rössler
, “
Nuclear magnetic resonance relaxometry as a method of measuring translational diffusion coefficients in liquids
,”
Phys. Rev. E
85
,
020201
(
2012
).
81.
R.
Meier
,
D.
Kruk
,
J.
Gmeiner
, and
E. A.
Rössler
, “
Intermolecular relaxation in glycerol as revealed by field cycling 1H NMR relaxometry dilution experiments
,”
J. Chem. Phys.
136
,
034508
(
2012
).
82.
E.
Rössler
and
P.
Eiermann
, “
Reorientational dynamics in supercooled m-tricresyl phosphate: Its relation to main and secondary relaxation—31P nuclear magnetic resonance study of relaxation, line shape, and stimulated echo
,”
J. Chem. Phys.
100
,
5237
(
1994
).
83.
R.
Richert
, “
On the dielectric susceptibility spectra of supercooled o-terphenyl
,”
J. Chem. Phys.
123
,
154502
(
2005
).
84.
N.
Petzold
and
E. A.
Rössler
, “
Light scattering study on the glass former o-terphenyl
,”
J. Chem. Phys.
133
,
124512
(
2010
).
85.
R.
Meier
,
D.
Kruk
,
A.
Bourdick
,
E.
Schneider
, and
E. A.
Rössler
, “
Inter- and intramolecular relaxation in molecular liquids by field cycling 1H NMR relaxometry
,”
Appl. Magn. Reson.
44
,
153
(
2013
).
86.
T.
Dries
,
F.
Fujara
,
M.
Kiebel
,
E.
Rössler
, and
H.
Sillescu
, “
2H-NMR study of the glass transition in supercooled ortho-terphenyl
,”
J. Chem. Phys.
88
,
2139
(
1988
).
87.
R.
Meier
,
R.
Kahlau
,
D.
Kruk
, and
E. A.
Rössler
, “
Comparative studies of the dynamics in viscous liquids by means of dielectric spectroscopy and field cycling NMR
,”
J. Phys. Chem. A
114
,
7847
(
2010
).
88.
B.
Schmidtke
,
N.
Petzold
,
M.
Flämig
, and
E. A.
Rössler
, “
From boiling point down to the glass transition - dynamics of molecular liquids described by a generalized Angell plot
,” in
Fragility of Glass-Forming Liquids
, edited by
A. L.
Greer
(
Hindustan Book Agency
,
New Delhi
,
2014
), p.
129
.
89.
R.
Kimmich
and
E.
Anoardo
, “
Field-cycling NMR relaxometry
,”
Prog. Nucl. Magn. Reson. Spectrosc.
44
,
257
(
2004
).
90.
R.
Meier
,
D.
Kruk
, and
E. A.
Rössler
, “
Intermolecular spin relaxation and translation diffusion in liquids and polymer melts: Insight from field-cycling 1H NMR relaxometry
,”
ChemPhysChem
14
,
3071
(
2013
).
91.
F.
Fujara
,
D.
Kruk
, and
A. F.
Privalov
, “
Solid state field-cycling NMR relaxometry: Instrumental improvements and new applications
,”
Prog. Nucl. Magn. Reson. Spectrosc.
82
,
39
(
2014
).
92.
R.
Kimmich
and
N.
Fatkullin
, “
Self-diffusion studies by intra- and inter-molecular spin-lattice relaxometry using field-cycling: Liquids, plastic crystals, porous media, and polymer segments
,”
Prog. Nucl. Magn. Reson. Spectrosc.
101
,
18
(
2017
).
93.
M.
Flämig
,
M.
Hofmann
,
A.
Lichtinger
, and
E. A.
Rössler
, “
Application of proton field-cycling NMR relaxometry for studying translational diffusion in simple liquids and polymer melts
,”
Magn. Reson. Chem.
57
,
805
(
2019
).
94.
N.
Bloembergen
,
E. M.
Purcell
, and
R. V.
Pound
, “
Relaxation effects in nuclear magnetic resonance absorption
,”
Phys. Rev.
73
,
679
(
1948
).
95.
S.
Kariyo
,
C.
Gainaru
,
H.
Schick
,
A.
Brodin
,
V. N.
Novikov
, and
E. A.
Rössler
, “
From a simple liquid to a polymer melt: NMR relaxometry study of polybutadiene
,”
Phys. Rev. Lett.
97
,
207803
(
2006
).
96.
S.
Kariyo
,
A.
Herrmann
,
C.
Gainaru
,
H.
Schick
,
A.
Brodin
,
V. N.
Novikov
, and
E. A.
Rössler
, “
Erratum. From a simple liquid to a polymer melt: NMR relaxometry study of polybutadiene [Phys. Rev. Lett. 97, 207803 (2006)]
,”
Phys. Rev. Lett.
100
,
109901
(
2008
).
97.
A.
Abragam
,
The Principles of Nuclear Magnetism
(
Clarendon Press
,
Oxford
,
1961
).
98.
E.
Rössler
and
H.
Sillescu
, “
2H NMR Study of supercooled toluene
,”
Chem. Phys. Lett.
112
,
94
(
1984
).
99.
R.
Böhmer
,
A.
Döß
,
G.
Hinze
,
H.
Sillescu
,
H.
Kolshorn
,
M.
Vogel
, and
H.
Zimmermann
, “
Deuteron and carbon magnetic resonance studies of supercooled liquid and glassy salol
,”
J. Chem. Phys.
112
,
5884
(
2000
).
100.
S.
Bauer
,
M.
Storek
,
C.
Gainaru
,
H.
Zimmermann
, and
R.
Böhmer
, “
Molecular motions in supercooled and glassy ibuprofen: Deuteron magnetic resonance and high-resolution rheology study
,”
J. Phys. Chem. B
119
,
5087
(
2015
).
101.
G.
Diezemann
,
R.
Böhmer
,
G.
Hinze
, and
H.
Sillescu
, “
Reorientational dynamics in simple supercooled liquids
,”
J. Non-Cryst. Solids
235-237
,
121
(
1998
).
102.
M. J.
Lebon
,
C.
Dreyfus
,
Y.
Guissani
,
R. M.
Pick
, and
H. Z.
Cummins
, “
Light scattering and dielectric susceptibility spectra of glassforming liquids
,”
Z. Phys. B
103
,
433
(
1997
).
103.
T.
Blochowicz
,
A.
Kudlik
,
S.
Benkhof
,
J.
Senker
,
E.
Rössler
, and
G.
Hinze
, “
The spectral density in simple organic glass formers: Comparison of dielectric and spin-lattice relaxation
,”
J. Chem. Phys.
110
,
12011
(
1999
).
104.
A.
Volmari
and
H.
Weingärtner
, “
Cross terms and Kirkwood factors in dielectric relaxation of pure liquids
,”
J. Mol. Liq.
98-99
,
295
(
2002
).
105.
T.
Yamaguchi
,
H.
Furuhashi
,
T.
Matsuoka
, and
S.
Koda
, “
Dynamic solvophobic effect and its cooperativity in the hydrogen-bonding liquids studied by dielectric and nuclear magnetic resonance relaxation
,”
J. Phys. Chem. B
112
,
16633
(
2008
).
106.
R.
Buchner
and
G.
Hefter
, “
Interactions and dynamics in electrolyte solutions by dielectric spectroscopy
,”
Phys. Chem. Chem. Phys.
11
,
8984
(
2009
).
107.
P.
Madden
and
D.
Kivelson
, “
A consistent molecular treatment of dielectric phenomena
,” in
Advances in Chemical Physics
, edited by
I.
Prigogine
and
S. A.
Rice
(
John Wiley & Sons, Inc.
,
Hoboken, NJ, USA
,
1984
), p.
467
.
108.
R.
Böhmer
,
C.
Gainaru
, and
R.
Richert
, “
Structure and dynamics of monohydroxy alcohols - milestones towards their microscopic understanding, 100 years after Debye
,”
Phys. Rep.
545
,
125
(
2014
).
109.
Y. Z.
Chua
,
A. R.
Young-Gonzales
,
R.
Richert
,
M. D.
Ediger
, and
C.
Schick
, “
Dynamics of supercooled liquid and plastic crystalline ethanol: Dielectric relaxation and AC nanocalorimetry distinguish structural α- and debye relaxation processes
,”
J. Chem. Phys.
147
,
014502
(
2017
).
110.
G. P.
Johari
and
M.
Goldstein
, “
Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules
,”
J. Chem. Phys.
53
,
2372
(
1970
).
111.
E.
Bartsch
,
F.
Fujara
,
B.
Geil
,
M.
Kiebel
,
W.
Petry
,
W.
Schnauss
,
H.
Sillescu
, and
J.
Wuttke
, “
Signatures of the glass transition in a van der Waals liquid seen by neutrons and NMR
,”
Physica A
201
,
223
(
1993
).
112.
J.
Wuttke
,
W.
Petry
, and
S.
Pouget
, “
Structural relaxation in viscous glycerol: Coherent neutron scattering
,”
J. Chem. Phys.
105
,
5177
(
1996
).
113.
W.
Kob
and
H. C.
Andersen
, “
Kinetic lattice-gas model of cage effects in high-density liquids and a test of mode-coupling theory of the ideal-glass transition
,”
Phys. Rev. E
48
,
4364
(
1993
).
114.
L. J.
Lewis
and
G.
Wahnström
, “
Molecular-dynamics study of supercooled ortho-terphenyl
,”
Phys. Rev. E
50
,
3865
(
1994
).
115.
M.
Cook
,
D. C.
Watts
, and
G.
Williams
, “
Correlation function approach to the dielectric behaviour of amorphous polymers
,”
Trans. Faraday Soc.
66
,
2503
(
1970
).
116.
After this paper was submitted PCS data of more supercooled liquids have become available, see
F.
Pabst
,
J.
Gabriel
,
T.
Böhmer
,
P.
Weigl
,
A.
Helbling
,
T.
Richter
,
P.
Zourchang
,
T.
Walther
, and
T.
Blochowicz
, “
Universal structural relaxation in supercooled liquids
,” arXiv:2008.01021.
117.
B.
Geil
and
G.
Hinze
, “
Influence of data treatment on the shape of 2H NMR T1 curves
,”
Chem. Phys. Lett.
216
,
51
(
1993
).
118.
L.-M.
Wang
and
R.
Richert
, “
Identification of dielectric and structural relaxations in glass-forming secondary amides
,”
J. Chem. Phys.
123
,
054516
(
2005
).
119.
C. S.
Zehe
,
J. A.
Hill
,
N. P.
Funnell
,
K.
Kreger
,
K. P.
van der Zwan
,
A. L.
Goodwin
,
H.-W.
Schmidt
, and
J.
Senker
, “
Polarisation auf der Mesoskala durch geometrische Frustration in kolumnaren supramolekularen Kristallen
,”
Angew. Chem.
129
,
4502
(
2017
).
120.
See https://www.chembk.com/en/chem/o-terphenyl for o-Terphenyl, 18 June 2020.
121.
M. G.
Faizullin
,
R. V.
Galeev
, and
A. K.
Mamleev
, “
Microwave spectrum of 2-methyltetrahydrofuran
,”
Russ. J. Phys. Chem.
91
,
2275
(
2017
).
122.
See https://www.chembk.com/en/chem/2-Methyltetrahydrofuran for 2-Methyltetrahydrofuran, 18 June 2020.
123.
Y. E.
Ryabov
,
Y.
Hayashi
,
A.
Gutina
, and
Y.
Feldman
, “
Features of supercooled glycerol dynamics
,”
Phys. Rev. B
67
,
132202
(
2003
).
124.
See https://www.chembk.com/en/chem/56-81-5 for Glycerol, 18 June 2020.
125.
C. W. N.
Cumper
and
A. P.
Thurston
, “
Electric dipole moments and molecular conformations of aromatic amines, phosphites, and phosphates
,”
J. Chem. Soc., B
1971
,
422
.
126.
See https://pubchem.ncbi.nlm.nih.gov/compound/Tri-M-cresyl-phosphate for National Center for Biotechnology Information, PubChem Compound Summary for CID 11232, Tri-M-cresyl phosphate, 18 June 2020.
You do not currently have access to this content.