We report a synchrotron radiation vacuum ultraviolet photoionization study of the hydroperoxyl radical (HO2), a key reaction intermediate in combustion and atmospheric chemistry as well as astrochemistry, using double imaging photoelectron photoion coincidence spectroscopy. The HO2 radical is formed in a microwave discharge flow tube reactor through a set of reactions initiated by F atoms in a CH4/O2/He gas mixture. The high-resolution threshold photoelectron spectrum of HO2 in the 11 eV–12 eV energy range is acquired without interferences from other species and assigned with the aid of theoretically calculated adiabatic ionization energies (AIEs) and Franck–Condon factors. The three vibrational modes of the radical cation HO2+, the H–O stretch, the H–O–O bend, and the O–O stretch, have been identified, and their individual frequencies are measured. In addition, the AIEs of the X3A″ ground state and the a1A′ first excited electronic state of HO2+ are experimentally determined at 11.359 ± 0.003 eV and 11.639 ± 0.005 eV, respectively, in agreement with high-level theoretically computed results. Furthermore, the former AIE value provides validation of thermochemical networks used to extract the enthalpy of formation of the HO2 radical.

1.
P. S.
Monks
, “
Gas-phase radical chemistry in the troposphere
,”
Chem. Soc. Rev.
34
,
376
(
2005
).
2.
S. W.
Benson
and
P. S.
Nangia
, “
Unresolved problems in oxidation and combustion
,”
Acc. Chem. Res.
12
,
223
(
1979
).
3.
S. L. W.
Weaver
,
D. E.
Woon
,
B.
Ruscic
, and
B. J.
McCall
, “
Is HO2+ a detectable interstellar molecule?
,”
Astrophys. J.
697
,
601
(
2009
).
4.
J. J.
Orlando
and
G. S.
Tyndall
, “
Laboratory studies of organic peroxy radical chemistry: An overview with emphasis on recent issues of atmospheric significance
,”
Chem. Soc. Rev.
41
,
6294
(
2012
).
5.
C. J.
Howard
, “
Kinetic study of the equilibrium HO2 + NO → OH + NO2 and the thermochemistry of HO2
,”
J. Am. Chem. Soc.
102
,
6937
(
1980
).
6.
T. T.
Paukert
and
H. S.
Johnston
, “
Spectra and kinetics of the hydroperoxyl free radical in the gas phase
,”
J. Chem. Phys.
56
,
2824
(
1972
).
7.
B.
Ruscic
and
D. H.
Bross
, Active Thermochemical Tables (ATcT) values based on version 1.122g of the Thermochemical Network,
2019
, available at https://ATcT.anl.gov; accessed 8 July 2020.
8.
D. R.
Burgess
, Jr.
, “
An evaluation of gas phase enthalpies of formation for hydrogen-oxygen (HxOy) species
,”
J. Res. NIST
121
,
108
(
2016
).
9.
Á.
Ganyecz
,
J.
Csontos
,
B.
Nagy
, and
M.
Kállay
, “
Theoretical and thermochemical network approaches to determine the heats of formation for HO2 and its ionic counterparts
,”
J. Phys. Chem. A
119
,
1164
(
2015
).
10.
J. H.
Vanlenthe
and
P. J. A.
Ruttink
, “
Ab initio calculations on the three lowest states of HO2+
,”
Chem. Phys. Lett.
56
,
20
(
1978
).
11.
S. N.
Foner
and
R. L.
Hudson
, “
Detection of the HO2 radical by mass spectrometry
,”
J. Chem. Phys.
21
,
1608
(
1953
).
12.
S. N.
Foner
and
R. L.
Hudson
, “
Mass spectrometry of the HO2 free radical
,”
J. Chem. Phys.
36
,
2681
(
1962
).
13.
K. G.
Lubic
,
T.
Amano
,
H.
Uehara
,
K.
Kawaguchi
, and
E.
Hirota
, “
The v1 band of the DO2 radical by difference frequency laser and diode laser spectroscopy: The equilibrium structure of the hydroperoxyl radical
,”
J. Chem. Phys.
81
,
4826
(
1984
).
14.
M. M.
Gonzalez
,
A. J. C.
Varandas
, and
F. G. D.
Xavier
, “
Global potential energy surface for HO2+ using the CHIPR method
,”
J. Phys. Chem. A
123
,
1613
(
2019
).
15.
M.
Litorja
and
B.
Ruscic
, “
A photoionization study of the hydroperoxyl radical, HO2, and hydrogen peroxide, H2O2
,”
J. Electron Spectrosc. Relat. Phenom.
97
,
131
(
1998
).
16.
J. M.
Dyke
,
N. B. H.
Jonathan
,
A.
Morris
, and
M. J.
Winter
, “
Vacuum ultraviolet photoelectron spectroscopy of transient species. Part 13. Observation of the X3A″ state of HO2+
,”
Mol. Phys.
44
,
1059
(
1981
).
17.
L. G.
Dodson
,
L.
Shen
,
J. D.
Savee
,
N. C.
Eddingsaas
,
O.
Welz
,
C. A.
Taatjes
,
D. L.
Osborn
,
S. P.
Sander
, and
M.
Okumura
, “
VUV photoionization cross sections of HO2, H2O2, and H2CO
,”
J. Phys. Chem. A
119
,
1279
(
2015
).
18.
H.
Kohguchi
,
P.
Jusko
,
K. M. T.
Yamada
,
S.
Schlemmer
, and
O.
Asvany
, “
High-resolution infrared spectroscopy of O2H+ in a cryogenic ion trap
,”
J. Chem. Phys.
148
,
144303
(
2018
).
19.
J. M.
Robbe
,
M.
Monnerville
,
G.
Chambaud
,
P.
Rosmus
, and
P. J.
Knowles
, “
Theoretical spectroscopic data of the HO2+ ion
,”
Chem. Phys.
252
,
9
(
2000
).
20.
S. A.
Nizkorodov
,
D.
Roth
,
R. V.
Olkhov
,
J. P.
Maier
, and
O.
Dopfer
, “
Infrared predissociation spectra of He–HO2+ and Ne–HO2+: Prediction of the v1 frequency of HO2+
,”
Chem. Phys. Lett.
278
,
26
(
1997
).
21.
M. E.
Jacox
and
W. E.
Thompson
, “
Infrared spectra of products of the reaction of H atoms with O2 trapped in solid neon: HO2, HO2+, HOHOH, and H2O(HO)
,”
J. Phys. Chem. A
117
,
9380
(
2013
).
22.
X.
Tang
,
X.
Gu
,
X.
Lin
,
W.
Zhang
,
G. A.
Garcia
,
C.
Fittschen
,
J. C.
Loison
,
K.
Voronova
,
B.
Sztáray
, and
L.
Nahon
, “
Vacuum ultraviolet photodynamics of the methyl peroxy radical studied by double imaging photoelectron photoion coincidences
,”
J. Chem. Phys.
152
,
104301
(
2020
).
23.
X.
Tang
,
X.
Lin
,
G. A.
Garcia
,
J. C.
Loison
,
C.
Fittschen
,
X.
Gu
,
W.
Zhang
, and
L.
Nahon
, “
Threshold photoelectron spectroscopy of the methoxy radical
,”
J. Chem. Phys.
153
,
031101
(
2020
).
24.
L.
Nahon
,
N.
de Oliveira
,
G. A.
Garcia
,
J. F.
Gil
,
B.
Pilette
,
O.
Marcouille
,
B.
Lagarde
, and
F.
Polack
, “
DESIRS: A state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL
,”
J. Synchrotron Radiat.
19
,
508
(
2012
).
25.
G. A.
Garcia
,
B. K.
Cunha de Miranda
,
M.
Tia
,
S.
Daly
, and
L.
Nahon
, “
Delicious III: A multipurpose double imaging particle coincidence spectrometer for gas phase vacuum ultraviolet photodynamics studies
,”
Rev. Sci. Instrum.
84
,
053112
(
2013
).
26.
X.
Tang
,
G. A.
Garcia
,
J. F.
Gil
, and
L.
Nahon
, “
Vacuum upgrade and enhanced performances of the double imaging electron/ion coincidence end-station at the vacuum ultraviolet beamline DESIRS
,”
Rev. Sci. Instrum.
86
,
123108
(
2015
).
27.
G. A.
Garcia
,
X.
Tang
,
J. F.
Gil
,
L.
Nahon
,
M.
Ward
,
S.
Batut
,
C.
Fittschen
,
C. A.
Taatjes
,
D. L.
Osborn
, and
J. C.
Loison
, “
Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD
,”
J. Chem. Phys.
142
,
164201
(
2015
).
28.
G. A.
Garcia
,
L.
Nahon
, and
I.
Powis
, “
Two-dimensional charged particle image inversion using a polar basis function expansion
,”
Rev. Sci. Instrum.
75
,
4989
(
2004
).
29.
H.-J.
Werner
and
P. J.
Knowles
, MOLPRO version 2015, http://www.molpro.net.
30.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
, and
G. A.
Petersson
, Gaussian 16, Revision B.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
31.
Z.
Wen
,
X.
Tang
,
C.
Wang
,
C.
Fittschen
,
T.
Wang
,
C.
Zhang
,
J.
Yang
,
Y.
Pan
,
F.
Liu
, and
W.
Zhang
, “
A vacuum ultraviolet photoionization time-of-flight mass spectrometer with high sensitivity for study of gas-phase radical reaction in a flow tube
,”
Int. J. Chem. Kinet.
51
,
178
(
2019
).
32.
T.
Baer
and
R. P.
Tuckett
, “
Advances in threshold photoelectron spectroscopy (TPES) and threshold photoelectron photoion coincidence (TPEPICO)
,”
Phys. Chem. Chem. Phys.
19
,
9698
(
2017
).
33.
M.
Hochlaf
, “
Advances in spectroscopy and dynamics of small and medium sized molecules and clusters
,”
Phys. Chem. Chem. Phys.
19
,
21236
(
2017
).
34.
J. C.
Poully
,
J. P.
Schermann
,
N.
Nieuwjaer
,
F.
Lecomte
,
G.
Grégoire
,
C.
Desfrançois
,
G. A.
Garcia
,
L.
Nahon
,
D.
Nandi
,
L.
Poisson
, and
M.
Hochlaf
, “
Photoionization of 2-pyridone and 2-hydroxypyridine
,”
Phys. Chem. Chem. Phys.
12
,
3566
(
2010
).
35.
M.
Briant
,
L.
Poisson
,
M.
Hochlaf
,
P.
de Pujo
,
M.-A.
Gaveau
, and
B.
Soep
, “
Ar2 photoelectron spectroscopy mediated by autoionizing states
,”
Phys. Rev. Lett.
109
,
193401
(
2012
).
36.
F.
George
,
D.
Xavier
, and
S.
Kumar
, “
Ab initio adiabatic and quasidiabatic potential energy surfaces of lowest four electronic states of the H++O2 system
,”
J. Chem. Phys.
133
,
164304
(
2010
).
37.
F.
Merkt
,
A.
Osterwalder
,
R.
Seiler
,
R.
Signorell
,
H.
Palm
,
H.
Schmutz
, and
R.
Gunzinger
, “
High Rydberg states of argon: Stark effect and field-ionization properties
,”
J. Phys. B: At., Mol. Opt. Phys.
31
,
1705
(
1998
).
38.
A. M.
Schulenburg
,
C.
Alcaraz
,
G.
Grassi
, and
F.
Merkt
, “
Rovibrational photoionization dynamics of methyl and its isotopomers studied by high-resolution photoionization and photoelectron spectroscopy
,”
J. Chem. Phys.
125
,
104310
(
2006
).
39.
B. H.
Niu
,
D. A.
Shirley
, and
Y.
Bai
, “
High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics of H2CO+ and D2CO+
,”
J. Chem. Phys.
98
,
4377
(
1993
).
40.
J. W.
Brault
, “
High precision Fourier transform spectrometry: The critical role of phase corrections
,”
Mikrochimica Acta
93
,
215
(
1987
).

Supplementary Material

You do not currently have access to this content.