The fruitful interplay of high-resolution spectroscopy and quantum chemistry has a long history, especially in the field of small, semi-rigid molecules. However, in recent years, the targets of spectroscopic studies are shifting toward flexible molecules, characterized by a large number of closely spaced energy minima, all contributing to the overall spectrum. Here, artificial intelligence comes into play since it is at the basis of powerful unsupervised techniques for the exploration of soft degrees of freedom. Integration of such algorithms with a two-stage QM/QM′ (Quantum Mechanical) exploration/refinement strategy driven by a user-friendly graphical interface is the topic of the present paper. We will address in particular: (i) the performances of different semi-empirical methods for the exploration step and (ii) the comparison between stochastic and meta-heuristic algorithms in achieving a cheap yet complete exploration of the conformational space for medium sized chromophores. As test cases, we choose three amino acids of increasing complexity, whose full conformer enumeration has been reached only very recently. Next, we show that systems in condensed phases can be treated at the same level and with the same efficiency when employing a polarizable continuum description of the solvent. Finally, the challenging issue represented by the vibrational circular dichroism spectra of some rhodium complexes with flexible ligands has been addressed, showing that our fully unsupervised approach leads to remarkable agreement with the experiment.

1.
K.
Choo
,
A.
Mezzacapo
, and
G.
Carleo
, “
Fermionic neural-network states for ab-initio electronic structure
,”
Nat. Commun.
11
(
1
),
2368
(
2020
).
2.
S. A.
Tawfik
,
O.
Isayev
,
C.
Stampfl
,
J.
Shapter
,
D. A.
Winkler
, and
M. J.
Ford
, “
Efficient prediction of structural and electronic properties of hybrid 2d materials using complementary DFT and machine learning approaches
,”
Adv. Theory Simul.
2
(
1
),
1800128
(
2019
).
3.
F.
Peiretti
and
J. M.
Brunel
, “
Artificial intelligence: The future for organic chemistry?
,”
ACS Omega
3
(
10
),
13263
13266
(
2018
).
4.
J. P.
Reid
and
M. S.
Sigman
, “
Holistic prediction of enantioselectivity in asymmetric catalysis
,”
Nature
571
(
7765
),
343
348
(
2019
).
5.
K.
Ghosh
,
A.
Stuke
,
M.
Todorović
,
P. B.
Jørgensen
,
M. N.
Schmidt
,
A.
Vehtari
, and
P.
Rinke
, “
Deep learning spectroscopy: Neural networks for molecular excitation spectra
,”
Adv. Sci.
6
(
9
),
1801367
(
2019
).
6.
J. C.
Cancilla
and
J. S.
Torrecilla
,
C. V.
Proestos
, and
J. O.
Valderrama
, “
Editorial: Artificial intelligence in chemistry
,”
Front. Chem.
8
,
275
(
2020
).
7.
A. R.
Leach
, “
A survey of methods for searching the conformational space of small and medium-sized molecules
,” in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
(
John Wiley & Sons, Inc.
,
1991
), Vol. 2, pp.
1
55
.
8.
M.
Saunders
,
K. N.
Houk
,
Y. D.
Wu
,
W. C.
Still
,
M.
Lipton
,
G.
Chang
, and
W. C.
Guida
, “
Conformations of cycloheptadecane. A comparison of methods for conformational searching
,”
J. Am. Chem. Soc.
112
(
4
),
1419
1427
(
1990
).
9.
J. T.
Ngo
and
M.
Karplus
, “
Pseudosystematic conformational search. Application to cycloheptadecane
,”
J. Am. Chem. Soc.
119
(
24
),
5657
5667
(
1997
).
10.
D. K.
Agrafiotis
,
A. C.
Gibbs
,
F.
Zhu
,
S.
Izrailev
, and
E.
Martin
, “
Conformational sampling of bioactive molecules: A comparative study
,”
J. Chem. Inf. Model.
47
(
3
),
1067
1086
(
2007
).
11.
V.
Barone
and
A.
Polimeno
, “
Integrated computational strategies for UV/vis spectra of large molecules in solution
,”
Chem. Soc. Rev.
36
(
11
),
1724
(
2007
).
12.
V.
Barone
,
M.
Biczysko
, and
G.
Brancato
, “
Extending the range of computational spectroscopy by QM/MM approaches: Time-dependent and time-independent routes
,” in
Advances in Quantum Chemistry
(
Elsevier
,
2010
), Vol. 59, pp.
17
57
.
13.
M. P.
Haag
,
A. C.
Vaucher
,
M.
Bosson
,
S.
Redon
, and
M.
Reiher
, “
Interactive chemical reactivity exploration
,”
ChemPhysChem
15
(
15
),
3301
3319
(
2014
).
14.
G. N.
Simm
,
A. C.
Vaucher
, and
M.
Reiher
, “
Exploration of reaction pathways and chemical transformation networks
,”
J. Phys. Chem. A
123
(
2
),
385
399
(
2019
).
15.
D. J.
Diller
and
K. M.
Merz
, Jr.
, “
Can we separate active from inactive conformations?
,”
J. Comput.-Aided Mol. Des.
16
(
2
),
105
112
(
2002
).
16.
J.
Kirchmair
,
C.
Laggner
,
G.
Wolber
, and
T.
Langer
, “
Comparative analysis of protein-bound ligand conformations with respect to catalyst’s conformational space subsampling algorithms
,”
J. Chem. Inf. Model.
45
(
2
),
422
430
(
2005
).
17.
N. M.
O’Boyle
,
T.
Vandermeersch
,
C. J.
Flynn
,
A. R.
Maguire
, and
G. R.
Hutchison
, “
Confab—Systematic generation of diverse low-energy conformers
,”
J. Cheminform.
3
(
1
),
8
(
2011
).
18.
H.
Goto
,
U.
Nagashima
,
K.
Ohta
,
T.
Takahashi
, and
Y.
Takata
, “
Conflex: Conformational behaviors of polypeptides as predicted by a conformational space search
,” Tech Connect Briefs, https://briefs.techconnect.org/papers/conflex-conformational-behaviors-of-polypeptides-as-predicted-by-a-conformational-spacesearch/ (
2003
).
19.
P.
Pracht
,
F.
Bohle
, and
S.
Grimme
, “
Automated exploration of the low-energy chemical space with fast quantum chemical methods
,”
Phys. Chem. Chem. Phys.
22
(
14
),
7169
7192
(
2020
).
20.
S.
Riniker
and
G. A.
Landrum
, “
Landrum. Better informed distance geometry: Using what we know to improve conformation generation
,”
J. Chem. Inf. Model.
55
(
12
),
2562
2574
(
2015
).
21.
S. B.
Ozkan
and
H.
Meirovitch
, “
Conformational search of peptides and proteins: Monte Carlo minimization with an adaptive bias method applied to the heptapeptide deltorphin
,”
J. Comput. Chem.
25
(
4
),
565
572
(
2004
).
22.
N.
Nair
and
J. M.
Goodman
, “
Genetic algorithms in conformational analysis
,”
J. Chem. Inf. Comput. Sci.
38
(
2
),
317
320
(
1998
).
23.
Y.
Sakae
,
T.
Hiroyasu
,
M.
Miki
, and
Y.
Okamoto
, “
Protein structure predictions by parallel simulated annealing molecular dynamics using genetic crossover
,”
J. Comput. Chem.
32
(
7
),
1353
1360
(
2011
).
24.
Z. E.
Brain
and
M. A.
Addicoat
, “
Optimization of a genetic algorithm for searching molecular conformer space
,”
J. Chem. Phys.
135
(
17
),
174106
(
2011
).
25.
J.
Zhao
,
R.
Shi
,
L.
Sai
,
X.
Huang
, and
Y.
Su
, “
Comprehensive genetic algorithm for ab initio global optimisation of clusters
,”
Mol. Simul.
42
(
10
),
809
819
(
2016
).
26.
H. A. A.
Bahamish
,
R.
Abdullah
, and
R.
Abdul Salam
,
Protein Conformational Search Using Bees Algorithm
(
IEEE
,
2008
). pp.
911
916
.
27.
H. A. A.
Bahamish
,
R.
Abdullah
, and
R.
Abdul Salam
,
Protein Tertiary Structure Prediction Using Artificial Bee Colony Algorithm
(
IEEE
,
2009
). pp.
258
263
.
28.
G.-J.
Zhang
,
X.-G.
Zhou
,
X.-F.
Yu
,
X.-H.
Hao
, and
L.
Yu
, “
Enhancing protein conformational space sampling using distance profile-guided differential evolution
,”
IEEE/ACM Trans. Comput. Biol. Bioinf.
14
,
1288
1301
(
2016
).
29.
Y.
Guo
and
Y.
Wang
, “
Predicting the non-compact conformation of amino acid sequence by particle swarm optimization
,” in
2013 7th International Conference on Systems Biology (ISB)
(
IEEE
,
2013
), pp.
119
122
.
30.
F.
Daeyaert
,
M.
De Jonge
,
L.
Koymans
, and
M.
Vinkers
, “
An ant algorithm for the conformational analysis of flexible molecules
,”
J. Comput. Chem.
28
(
5
),
890
898
(
2007
).
31.
F.
Glover
and
M.
Laguna
,
Tabu Search
(
Kluwer Academic Publishers
,
1997
).
32.
D. H.
Wolpert
and
W. G.
Macready
, “
No free lunch theorems for optimization
,”
IEEE Trans. Evol. Comput.
1
(
1
),
67
82
(
1997
).
33.
L.-P.
Wang
,
K. A.
McKiernan
,
J.
Gomes
,
K. A.
Beauchamp
,
T.
Head-Gordon
,
J. E.
Rice
,
W. C.
Swope
,
T. J.
Martínez
, and
V. S.
Pande
, “
Building a more predictive protein force field: A systematic and reproducible route to AMBER-FB15
,”
J. Phys. Chem. B
121
(
16
),
4023
4039
(
2017
).
34.
E.
Harder
,
W.
Damm
,
J.
Maple
,
C.
Wu
,
M.
Reboul
,
J. Y.
Xiang
,
L.
Wang
,
D.
Lupyan
,
M. K.
Dahlgren
,
J. L.
Knight
,
J. W.
Kaus
,
D. S.
Cerutti
,
G.
Krilov
,
W. L.
Jorgensen
,
R.
Abel
, and
R. A.
Friesner
, “
OPLS3: A force field providing broad coverage of drug-like small molecules and proteins
,”
J. Chem. Theory Comput.
12
(
1
),
281
296
(
2016
).
35.
B.
Chandramouli
,
S.
Del Galdo
,
G.
Mancini
,
N.
Tasinato
, and
V.
Barone
, “
Tailor-made computational protocols for precise characterization of small biological building blocks using QM and MM approaches
,”
Biopolymers
109
,
e23109
(
2018
).
36.
Computational Strategies for Spectroscopy: From Small Molecules to Nano Systems
, edited by
V.
Barone
(
Wiley
,
2011
).
37.
S.
Spicher
and
S.
Grimme
, “
Robust atomistic modeling of materials, organometallic and biochemical systems
,”
Angew. Chem., Int. Ed.
132
(
1
),
1
12
(
2020
).
38.
B.
Chandramouli
,
S.
Del Galdo
,
M.
Fusè
,
V.
Barone
, and
G.
Mancini
, “
Two-level stochastic search of low-energy conformers for molecular spectroscopy: Implementation and validation of MM and QM models
,”
Phys. Chem. Chem. Phys.
21
,
19921
19934
(
2019
).
39.
D.
Porezag
,
T.
Frauenheim
,
T.
Köhler
,
G.
Seifert
, and
R.
Kaschner
, “
Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon
,”
Phys. Rev. B
51
(
19
),
12947
12957
(
1995
).
40.
J. J. P.
Stewart
, “
Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements
,”
J. Mol. Model.
13
(
12
),
1173
1213
(
2007
).
41.
V. K.
Prasad
,
A.
Otero-de-la-Roza
, and
G. A.
DiLabio
, “
Atom-centered potentials with dispersion-corrected minimal-basis-set Hartree–Fock: An efficient and accurate computational approach for large molecular systems
,”
J. Chem. Theory Comput.
14
(
2
),
726
738
(
2018
).
42.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
, “
GFN2-XTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions
,”
J. Chem. Theory Comput.
15
(
3
),
1652
1671
(
2019
).
43.
J.
Brownlee
,
Clever Algorithms: Nature-Inspired Programming Recipes
, LuLu.com, s.l., 2nd revision edition (
OCLC
,
2012
).
44.
V.
Barone
,
M.
Biczysko
,
J.
Bloino
, and
C.
Puzzarini
, “
Characterization of the elusive conformers of glycine from state-of-the-art structural, thermodynamic, and spectroscopic computations: Theory complements experiment
,”
J. Chem. Theory Comput.
9
(
3
),
1533
1547
(
2013
).
45.
T.
Szidarovszky
,
G.
Czakó
, and
A. G.
Császár
, “
Conformers of gaseous threonine
,”
Mol. Phys.
107
(
8
),
761
775
(
2009
).
46.
K.
He
and
W. D.
Allen
, “
Conformers of gaseous serine
,”
J. Chem. Theory Comput.
12
(
8
),
3571
3582
(
2016
).
47.
J. J.
Wilke
,
M. C.
Lind
,
H. F.
Schaefer
,
A. G.
Császár
, and
W. D.
Allen
, “
Conformers of gaseous cysteine
,”
J. Chem. Theory Comput.
5
(
6
),
1511
1523
(
2009
).
48.
G.
Szilvágyi
,
Z.
Majer
,
E.
Vass
, and
M.
Hollósi
, “
Conformational studies on chiral rhodium complexes by ECD and VCD spectroscopy
,”
Chirality
23
(
4
),
294
299
(
2011
).
49.
B.
Assadollahzadeh
,
P. R.
Bunker
, and
P.
Schwerdtfeger
, “
The low lying isomers of the copper nonamer cluster, Cu9
,”
Chem. Phys. Lett.
451
(
4
),
262
269
(
2008
).
50.
J. L.
Llanio-Trujillo
,
J. M. C.
Marques
, and
F. B.
Pereira
, “
An evolutionary algorithm for the global optimization of molecular clusters: Application to water, benzene, and benzene cation
,”
J. Phys. Chem. A
115
(
11
),
2130
2138
(
2011
).
51.
J. H.
Holland
, “
Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence
,” in
Complex Adaptive Systems
, 1st MIT press ed. (
MIT Press
,
1992
).
52.
D.
Whitley
, “
A genetic algorithm tutorial
,”
Stat. Comput.
4
(
2
),
65
85
(
1994
).
53.
Y.
Nourani
and
B.
Andresen
, “
A comparison of simulated annealing cooling strategies
,”
J. Phys. A: Math. Gen.
31
(
41
),
8373
8385
(
1998
).
54.
T.
Bäck
and
H.-P.
Schwefel
, “
An overview of evolutionary algorithms for parameter optimization
,”
Evol. Comput.
1
(
1
),
1
23
(
1993
).
55.
D.
Ferro-Costas
and
A.
Fernández-Ramos
, “
A combined systematic-stochastic algorithm for the conformational search in flexible acyclic molecules
,”
Front. Chem.
8
,
16
(
2020
).
56.
F.
Lazzari
,
A.
Salvadori
,
G.
Mancini
, and
V.
Barone
, “
Molecular perception for visualization and computation: The proxima library
,”
J. Chem. Inf. Model.
60
,
2668
2672
(
2020
).
57.
J.
Parsons
,
J. B.
Holmes
,
J. M.
Rojas
,
J.
Tsai
, and
C. E. M.
Strauss
, “
Practical conversion from torsion space to Cartesian space forin silico protein synthesis
,”
J. Comput. Chem.
26
(
10
),
1063
1068
(
2005
).
58.
D.
Whitley
,
S.
Rana
, and
R. B.
Heckendorn
, “
The island model genetic algorithm: On separability, population size and convergence
,”
J. Comput. Info. Technol.
7
(
1
),
33
47
(
1999
).
59.
L.
Kaufmann
and
P. J.
Rousseeuw
, “
Partitioning around Medoids (Program PAM)
,” in
Finding Groups in Data: An Introduction to Cluster Analysis
, edited by
L.
Kaufman
and
P. J.
Rousseeuw
(
Wiley, Hoboken, NJ
,
1990
), pp.
68
125
.
60.
J.
Han
and
M.
Kamber
,
Data Mining: Concepts and Techniques
, 3rd ed. (
Elsevier
,
2011
).
61.
C. C.
Aggarwal
and
C. K.
Reddy
,
Data Clustering: Algorithms and Applications
(
Chapman and Hall/CRC
,
2014
).
62.
T.
Hastie
,
R.
Tibshirani
, and
J.
Friedman
,
The Elements of Statistical Learning
. Springer Series in Statistics (
Springer
New York
,
2009
).
63.
D.
Licari
,
M.
Fusè
,
A.
Salvadori
,
N.
Tasinato
,
M.
Mendolicchio
,
G.
Mancini
, and
V.
Barone
, “
Towards the SMART workflow system for computational spectroscopy
,”
Phys. Chem. Chem. Phys.
20
,
26034
26052
(
2018
).
64.
G.
Mancini
and
C.
Zazza
, “
F429 regulation of tunnels in cytochrome p450 2b4: A top down study of multiple molecular dynamics simulations
,”
PLoS One
10
(
9
),
e0137075
(
2015
).
65.
J. L.
Alonso
,
C.
Pérez
,
M.
Eugenia Sanz
,
J. C.
López
, and
S.
Blanco.
, “
Seven conformers of l-threonine in the gas phase: A LA-MB-FTMW study
,”
Phys. Chem. Chem. Phys.
11
(
4
),
617
627
(
2009
).
66.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
67.
R.
Sure
and
S.
Grimme
, “
Corrected small basis set Hartree-Fock method for large systems
,”
J. Comput. Chem.
34
(
19
),
1672
1685
(
2013
).
68.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16 Revision B.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
69.
L.
Goerigk
and
S.
Grimme
, “
Efficient and accurate double-hybrid-meta-GGA density functionals—Evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions
,”
J. Chem. Theory Comput.
7
(
2
),
291
309
(
2011
).
70.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
(
7
),
1456
1465
(
2011
).
71.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
(
2
),
1007
1023
(
1989
).
72.
E.
Papajak
,
J.
Zheng
,
X.
Xu
,
H. R.
Leverentz
, and
D. G.
Truhlar
, “
Perspectives on basis sets beautiful: Seasonal plantings of diffuse basis functions
,”
J. Chem. Theory Comput.
7
(
10
),
3027
3034
(
2011
).
73.
M.
Fusè
,
G.
Mazzeo
,
G.
Longhi
,
S.
Abbate
,
M.
Masi
,
A.
Evidente
,
C.
Puzzarini
, and
V.
Barone
, “
Unbiased determination of absolute configurations by vis-à-vis comparison of experimental and simulated spectra: The challenging case of diplopyrone
,”
J. Phys. Chem. B
123
(
43
),
9230
9237
(
2019
).
74.
A. K.
Rappe
,
K. S.
Colwell
, and
C. J.
Casewit
, “
Application of a universal force field to metal complexes
,”
Inorg. Chem.
32
(
16
),
3438
3450
(
1993
).
75.
J. M. L.
Martin
and
A.
Sundermann
, “
Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and in–Xe
,”
J. Chem. Phys.
114
(
8
),
3408
3420
(
2001
).
76.
D.
Andrae
,
U.
Häußermann
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuß
, “
Energy-adjusted ab initio pseudopotentials for the second and third row transition elements
,”
Theor. Chim. Acta
77
(
2
),
123
141
(
1990
).
77.
F. A.
Cotton
,
B. G.
DeBoer
,
M. D.
LaPrade
,
J. R.
Pipal
, and
D. A.
Ucko
, “
The crystal and molecular structures of dichromium tetraacetate dihydrate and dirhodium tetraacetate dihydrate
,”
Acta Crystallogr., Sect. B
27
(
8
),
1664
1671
(
1971
).
78.
M.
Cossi
,
N.
Rega
,
G.
Scalmani
, and
V.
Barone
, “
Energies, structures and electronic properties of molecules in solution by the C-PCM solvation model
,”
J. Comput. Chem.
24
,
669
681
(
2003
).
79.
A.
Salvadori
,
G.
Del Frate
,
M.
Pagliai
,
G.
Mancini
, and
V.
Barone
, “
Immersive virtual reality in computational chemistry: Applications to the analysis of QM and MM data
,”
Int. J. Quantum Chem.
116
(
22
),
1731
1746
(
2016
).

Supplementary Material

You do not currently have access to this content.