The General AMBER Force Field (GAFF) has been broadly used by researchers all over the world to perform in silico simulations and modelings on diverse scientific topics, especially in the field of computer-aided drug design whose primary task is to accurately predict the affinity and selectivity of receptor–ligand binding. The atomic partial charges in GAFF and the second generation of GAFF (GAFF2) were originally developed with the quantum mechanics derived restrained electrostatic potential charge, but in practice, users usually adopt an efficient charge method, Austin Model 1-bond charge corrections (AM1-BCC), based on which, without expensive ab initio calculations, the atomic charges could be efficiently and conveniently obtained with the ANTECHAMBER module implemented in the AMBER software package. In this work, we developed a new set of BCC parameters specifically for GAFF2 using 442 neutral organic solutes covering diverse functional groups in aqueous solution. Compared to the original BCC parameter set, the new parameter set significantly reduced the mean unsigned error (MUE) of hydration free energies from 1.03 kcal/mol to 0.37 kcal/mol. More excitingly, this new AM1-BCC model also showed excellent performance in the solvation free energy (SFE) calculation on diverse solutes in various organic solvents across a range of different dielectric constants. In this large-scale test with totally 895 neutral organic solvent–solute systems, the new parameter set led to accurate SFE predictions with the MUE and the root-mean-square-error of 0.51 kcal/mol and 0.65 kcal/mol, respectively. This newly developed charge model, ABCG2, paved a promising path for the next generation GAFF development.

1.
M. K.
Gilson
and
H.-X.
Zhou
, “
Calculation of protein-ligand binding affinities
,”
Annu. Rev. Biophys. Biomol. Struct.
36
,
21
(
2007
).
2.
Y.
Deng
and
B.
Roux
, “
Computations of standard binding free energies with molecular dynamics simulations
,”
J. Phys. Chem. B
113
,
2234
(
2009
).
3.
W. L.
Jorgensen
, “
The many roles of computation in drug discovery
,”
Science
303
,
1813
(
2004
).
4.
W. L.
Jorgensen
, “
Efficient drug lead discovery and optimization
,”
Acc. Chem. Res.
42
,
724
(
2009
).
5.
W.
Yang
, “
Advanced sampling for molecular simulation is coming of age
,”
J. Comput. Chem.
37
,
549
(
2016
).
6.
T.
Hansson
,
J.
Marelius
, and
J.
Åqvist
, “
Ligand binding affinity prediction by linear interaction energy methods
,”
J. Comput. -Aided Mol. Des.
12
,
27
(
1998
).
7.
R.
Zhou
,
R. A.
Friesner
,
A.
Ghosh
,
R. C.
Rizzo
,
W. L.
Jorgensen
, and
R. M.
Levy
, “
New linear interaction method for binding affinity calculations using a continuum solvent model
,”
J. Phys. Chem. B
105
,
10388
(
2001
).
8.
X.
He
,
V. H.
Man
,
B.
Ji
,
X.-Q.
Xie
, and
J.
Wang
, “
Calculate protein–ligand binding affinities with the extended linear interaction energy method: Application on the Cathepsin S set in the D3R grand challenge 3
,”
J. Comput. - Aided Mol. Des.
33
,
105
(
2019
).
9.
I.
Massova
and
P. A.
Kollman
, “
Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding
,”
Perspect. Drug Discovery Des.
18
,
113
(
2000
).
10.
S.
Genheden
and
U.
Ryde
, “
The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities
,”
Expert Opin. Drug Discovery
10
,
449
(
2015
).
11.
C.
Wang
,
D. A.
Greene
,
L.
Xiao
,
R.
Qi
, and
R.
Luo
, “
Recent developments and applications of the MMPBSA method
,”
Front. Mol. Biosci.
4
,
87
(
2018
).
12.
E.
Wang
,
H.
Sun
,
J.
Wang
,
Z.
Wang
,
H.
Liu
,
J. Z. H.
Zhang
, and
T.
Hou
, “
End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design
,”
Chem. Rev.
119
,
9478
(
2019
).
13.
J. D.
Chodera
,
D. L.
Mobley
,
M. R.
Shirts
,
R. W.
Dixon
,
K.
Branson
, and
V. S.
Pande
, “
Alchemical free energy methods for drug discovery: Progress and challenges
,”
Curr. Opin. Struct. Biol.
21
,
150
160
(
2011
).
14.
L.
Wang
,
Y.
Wu
,
Y.
Deng
,
B.
Kim
,
L.
Pierce
,
G.
Krilov
,
D.
Lupyan
,
S.
Robinson
,
M. K.
Dahlgren
,
J.
Greenwood
,
D. L.
Romero
,
C.
Masse
,
J. L.
Knight
,
T.
Steinbrecher
,
T.
Beuming
,
W.
Damm
,
E.
Harder
,
W.
Sherman
,
M.
Brewer
,
R.
Wester
,
M.
Murcko
,
L.
Frye
,
R.
Farid
,
T.
Lin
,
D. L.
Mobley
,
W. L.
Jorgensen
,
B. J.
Berne
,
R. A.
Friesner
, and
R.
Abel
, “
Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field
,”
J. Am. Chem. Soc.
137
,
2695
(
2015
).
15.
J. L.
Knight
and
C. L.
Brooks
, “
λ-Dynamics free energy simulation methods
,”
J. Comput. Chem.
30
,
1692
(
2009
).
16.
L.
Zheng
,
M.
Chen
, and
W.
Yang
, “
Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
20227
(
2008
).
17.
E.
Gallicchio
and
R. M.
Levy
, “
Advances in all atom sampling methods for modeling protein–ligand binding affinities
,”
Curr. Opin. Struct. Biol.
21
,
161
(
2011
).
18.
N.
Hansen
and
W. F.
van Gunsteren
, “
Practical aspects of free-energy calculations: A review
,”
J. Chem. Theory Comput.
10
,
2632
(
2014
).
19.
A. D.
MacKerell
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiórkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
, “
All-atom empirical potential for molecular modeling and dynamics studies of proteins
,”
J. Phys. Chem. B
102
(
18
),
3586
(
1998
).
20.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
(
1996
).
21.
V.
Hornak
,
R.
Abel
,
A.
Okur
,
B.
Strockbine
,
A.
Roitberg
, and
C.
Simmerling
, “
Comparison of multiple amber force fields and development of improved protein backbone parameters
,”
Proteins: Struct., Funct., Bioinf.
65
,
712
(
2006
).
22.
J. A.
Maier
,
C.
Martinez
,
K.
Kasavajhala
,
L.
Wickstrom
,
K. E.
Hauser
, and
C.
Simmerling
, “
ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB
,”
J. Chem. Theory Comput.
11
,
3696
(
2015
).
23.
C.
Oostenbrink
,
A.
Villa
,
A. E.
Mark
, and
W. F.
van Gunsteren
, “
A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6
,”
J. Comput. Chem.
25
,
1656
(
2004
).
24.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
,
1157
(
2004
).
25.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Erratum: ‘Development and testing of a general amber force field,’ Journal of Computational Chemistry (2004) 25(9) 1157–1174
,”
J. Comput. Chem.
26
,
114
(
2005
).
26.
K.
Vanommeslaeghe
,
E.
Hatcher
,
C.
Acharya
,
S.
Kundu
,
S.
Zhong
,
J.
Shim
,
E.
Darian
,
O.
Guvench
,
P.
Lopes
,
I.
Vorobyov
, and
A. D.
MacKerell
, Jr.
, “
CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force field
,”
J. Comput. Chem.
31
,
671
(
2010
).
27.
W.
Yu
,
X.
He
,
K.
Vanommeslaeghe
, and
A. D.
MacKerell
, Jr.
, “
Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations
,”
J. Comput. Chem.
33
,
2451
(
2012
).
28.
B. A.
Bauer
and
S.
Patel
, “
Recent applications and developments of charge equilibration force fields for modeling dynamical charges in classical molecular dynamics simulations
,”
Theor. Chem. Acc.
131
,
1153
(
2012
).
29.
J. A.
Lemkul
,
J.
Huang
,
B.
Roux
, and
A. D.
MacKerell
, Jr.
, “
An empirical polarizable force field based on the classical drude oscillator model: Development history and recent applications
,”
Chem. Rev.
116
,
4983
(
2016
).
30.
K.
Vanommeslaeghe
and
A. D.
MacKerell
, Jr.
, “
CHARMM additive and polarizable force fields for biophysics and computer-aided drug design
,”
Biochim. Biophys. Acta
1850
,
861
(
2015
).
31.
H.
Goel
,
W.
Yu
,
V. D.
Ustach
,
A. H.
Aytenfisu
,
D.
Sun
, and
A. D.
MacKerell
, Jr.
, “
Impact of electronic polarizability on protein-functional group interactions
,”
Phys. Chem. Chem. Phys.
22
,
6848
(
2020
).
32.
Z.
Jing
,
C.
Liu
,
S. Y.
Cheng
,
R.
Qi
,
B. D.
Walker
,
J.-P.
Piquemal
, and
P.
Ren
, “
Polarizable force fields for biomolecular simulations: Recent advances and applications
,”
Annu. Rev. Biophys.
48
,
371
(
2019
).
33.
J.
Wang
,
P.
Cieplak
,
R.
Luo
, and
Y.
Duan
, “
Development of polarizable Gaussian model for molecular mechanical calculations I: Atomic polarizability parameterization to reproduce ab initio anisotropy
,”
J. Chem. Theory Comput.
15
,
1146
(
2019
).
34.
D. R.
Slochower
,
N. M.
Henriksen
,
L.-P.
Wang
,
J. D.
Chodera
,
D. L.
Mobley
, and
M. K.
Gilson
, “
Binding thermodynamics of Host–Guest systems with SMIRNOFF99Frosst 1.0.5 from the open force field initiative
,”
J. Chem. Theory Comput.
15
,
6225
(
2019
).
35.
D. L.
Mobley
,
C. C.
Bannan
,
A.
Rizzi
,
C. I.
Bayly
,
J. D.
Chodera
,
V. T.
Lim
,
N. M.
Lim
,
K. A.
Beauchamp
,
D. R.
Slochower
,
M. R.
Shirts
,
M. K.
Gilson
, and
P. K.
Eastman
, “
Escaping atom types in force fields using direct chemical perception
,”
J. Chem. Theory Comput.
14
,
6076
(
2018
).
36.
C. I.
Bayly
,
P.
Cieplak
,
W.
Cornell
, and
P. A.
Kollman
, “
A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model
,”
J. Phys. Chem.
97
,
10269
(
1993
).
37.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
, “
How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
,”
J. Comput. Chem.
21
,
1049
(
2000
).
38.
A.
Jakalian
,
B. L.
Bush
,
D. B.
Jack
, and
C. I.
Bayly
, “
Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method
,”
J. Comput. Chem.
21
,
132
(
2000
).
39.
A.
Jakalian
,
D. B.
Jack
, and
C. I.
Bayly
, “
Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation
,”
J. Comput. Chem.
23
,
1623
(
2002
).
40.
J.
Wang
,
W.
Wang
,
P. A.
Kollman
, and
D. A.
Case
, “
Automatic atom type and bond type perception in molecular mechanical calculations
,”
J. Mol. Graphics Modell.
25
,
247
(
2006
).
41.
B. A. C.
Horta
,
P. F. J.
Fuchs
,
W. F.
van Gunsteren
, and
P. H.
Hünenberger
, “
New interaction parameters for oxygen compounds in the GROMOS force field: Improved pure-liquid and solvation properties for alcohols, ethers, aldehydes, ketones, carboxylic acids, and esters
,”
J. Chem. Theory Comput.
7
,
1016
(
2011
).
42.
J. P. M.
Jämbeck
,
F.
Mocci
,
A. P.
Lyubartsev
, and
A.
Laaksonen
, “
Partial atomic charges and their impact on the free energy of solvation
,”
J. Comput. Chem.
34
,
187
(
2013
).
43.
D.
Shivakumar
,
J.
Williams
,
Y.
Wu
,
W.
Damm
,
J.
Shelley
, and
W.
Sherman
, “
Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field
,”
J. Chem. Theory Comput.
6
,
1509
(
2010
).
44.
D.
Shivakumar
,
E.
Harder
,
W.
Damm
,
R. A.
Friesner
, and
W.
Sherman
, “
Improving the prediction of absolute solvation free energies using the next generation OPLS force field
,”
J. Chem. Theory Comput.
8
,
2553
(
2012
).
45.
G.
Mukherjee
,
N.
Patra
,
P.
Barua
, and
B.
Jayaram
, “
A fast empirical GAFF compatible partial atomic charge assignment scheme for modeling interactions of small molecules with biomolecular targets
,”
J. Comput. Chem.
32
,
893
(
2011
).
46.
A.
Ahmed
and
S. I.
Sandler
, “
Hydration free energies of multifunctional nitroaromatic compounds
,”
J. Chem. Theory Comput.
9
,
2774
(
2013
).
47.
S. A.
Martins
,
S. F.
Sousa
,
M. J.
Ramos
, and
P. A.
Fernandes
, “
Prediction of solvation free energies with thermodynamic integration using the general amber force field
,”
J. Chem. Theory Comput.
10
,
3570
(
2014
).
48.
M.
Lundborg
and
E.
Lindahl
, “
Automatic GROMACS topology generation and comparisons of force fields for solvation free energy calculations
,”
J. Phys. Chem. B
119
,
810
(
2015
).
49.
J.
Zhang
,
B.
Tuguldur
, and
D.
van der Spoel
, “
Force field benchmark of organic liquids. II. Gibbs energy of solvation
,”
J. Chem. Inf. Model.
55
,
1192
(
2015
).
50.
N. A.
Mohamed
,
R. T.
Bradshaw
, and
J. W.
Essex
, “
Evaluation of solvation free energies for small molecules with the AMOEBA polarizable force field
,”
J. Comput. Chem.
37
,
2749
(
2016
).
51.
A.
Mecklenfeld
and
G.
Raabe
, “
Comparison of RESP and IPolQ-mod partial charges for solvation free energy calculations of various solute/solvent pairs
,”
J. Chem. Theory Comput.
13
,
6266
(
2017
).
52.
D. L.
Mobley
,
C. I.
Bayly
,
M. D.
Cooper
,
M. R.
Shirts
, and
K. A.
Dill
, “
Small molecule hydration free energies in explicit solvent: An extensive test of fixed-charge atomistic simulations
,”
J. Chem. Theory Comput.
5
,
350
(
2009
).
53.
D. L.
Mobley
,
C. I.
Bayly
,
M. D.
Cooper
,
M. R.
Shirts
, and
K. A.
Dill
, “
Correction to small molecule hydration free energies in explicit solvent: An extensive test of fixed-charge atomistic simulations
,”
J. Chem. Theory Comput.
11
,
1347
(
2015
).
54.
D. L.
Mobley
and
J. P.
Guthrie
, “
FreeSolv: A database of experimental and calculated hydration free energies, with input files
,”
J. Comput. - Aided Mol. Des.
28
,
711
(
2014
).
55.
P. S.
Nerenberg
,
B.
Jo
,
C.
So
,
A.
Tripathy
, and
T.
Head-Gordon
, “
Optimizing Solute–Water van der Waals interactions to reproduce solvation free energies
,”
J. Phys. Chem. B
116
,
4524
(
2012
).
56.
J. P. M.
Jämbeck
and
A. P.
Lyubartsev
, “
Update to the general amber force field for small solutes with an emphasis on free energies of hydration
,”
J. Phys. Chem. B
118
,
3793
(
2014
).
57.
D. L.
Mobley
,
S.
Liu
,
D. S.
Cerutti
,
W. C.
Swope
, and
J. E.
Rice
, “
Alchemical prediction of hydration free energies for SAMPL
,”
J. Comput. - Aided Mol. Des.
26
,
551
(
2012
).
58.
D. L.
Mobley
,
É.
Dumont
,
J. D.
Chodera
, and
K. A.
Dill
, “
Comparison of charge models for fixed-charge force fields: Small-molecule hydration free energies in explicit solvent
,”
J. Phys. Chem. B
111
,
2242
(
2007
).
59.
D. L.
Mobley
,
É.
Dumont
,
J. D.
Chodera
, and
K. A.
Dill
, “
Comparison of charge models for fixed-charge force fields: Small molecule hydration free energies in explicit solvent
,”
J. Phys. Chem. B
115
,
1329
(
2011
).
60.
G.
Wallin
,
M.
Nervall
,
J.
Carlsson
, and
J.
Åqvist
, “
Charges for large scale binding free energy calculations with the linear interaction energy method
,”
J. Chem. Theory Comput.
5
,
380
(
2009
).
61.
L. S.
Dodda
,
J. Z.
Vilseck
,
K. J.
Cutrona
, and
W. L.
Jorgensen
, “
Evaluation of CM5 charges for nonaqueous condensed-phase modeling
,”
J. Chem. Theory Comput.
11
,
4273
(
2015
).
62.
A. V.
Marenich
,
C. P.
Kelly
,
J. D.
Thompson
,
G. D.
Hawkins
,
C. C.
Chambers
,
D. J.
Giesen
,
P.
Winget
,
C. J.
Cramer
, and
D. G.
Truhlar
, Minnesota Solvation Database–Version 2012,
University of Minnesota
,
Minneapolis
,
2012
.
63.
Maestro, Schrödinger, LLC, New York, NY,
2017
.
64.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
65.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
(
1983
).
66.
D. A.
Case
,
I. Y.
Ben-Shalom
,
S. R.
Brozell
,
D. S.
Cerutti
,
T. E.
Cheatham
 III
,
V. W. D.
Cruzeiro
,
T. A.
Darden
,
R. E.
Duke
,
D.
Ghoreishi
,
M. K.
Gilson
,
H.
Gohlke
,
A. W.
Goetz
,
D.
Greene
,
R.
Harris
,
N.
Homeyer
,
S.
Izadi
,
A.
Kovalenko
,
T.
Kurtzman
,
T. S.
Lee
,
S.
LeGrand
,
P.
Li
,
C.
Lin
,
J.
Liu
,
T.
Luchko
,
R.
Luo
,
D. J.
Mermelstein
,
K. M.
Merz
,
Y.
Miao
,
G.
Monard
,
C.
Nguyen
,
H.
Nguyen
,
I.
Omelyan
,
A.
Onufriev
,
F.
Pan
,
R.
Qi
,
D. R.
Roe
,
A.
Roitberg
,
C.
Sagui
,
S.
Schott-Verdugo
,
J.
Shen
,
C. L.
Simmerling
,
J.
Smith
,
R.
Salomon-Ferrer
,
J.
Swails
,
R. C.
Walker
,
J.
Wang
,
H.
Wei
,
R. M.
Wolf
,
X.
Wu
,
L.
Xiao
,
D. M.
York
, and
P. A.
Kollman
, AMBER 2018,
University of California
,
San Francisco
,
2018
.
67.
J. W.
Kaus
,
L. T.
Pierce
,
R. C.
Walker
, and
J. A.
McCammon
, “
Improving the efficiency of free energy calculations in the amber molecular dynamics package
,”
J. Chem. Theory Comput.
9
,
4131
(
2013
).
68.
T.-S.
Lee
,
Y.
Hu
,
B.
Sherborne
,
Z.
Guo
, and
D. M.
York
, “
Toward fast and accurate binding affinity prediction with pmemdGTI: An efficient implementation of GPU-accelerated thermodynamic integration
,”
J. Chem. Theory Comput.
13
,
3077
(
2017
).
69.
T.-S.
Lee
,
D. S.
Cerutti
,
D.
Mermelstein
,
C.
Lin
,
S.
LeGrand
,
T. J.
Giese
,
A.
Roitberg
,
D. A.
Case
,
R. C.
Walker
, and
D. M.
York
, “
GPU-accelerated molecular dynamics and free energy methods in Amber18: Performance enhancements and new features
,”
J. Chem. Inf. Model.
58
,
2043
(
2018
).
70.
T.
Steinbrecher
,
D. L.
Mobley
, and
D. A.
Case
, “
Non-linear scaling schemes for Lennard-Jones interactions in free energy calculations
,”
J. Chem. Phys.
127
,
214108
(
2007
).
71.
T.
Steinbrecher
,
I.
Joung
, and
D. A.
Case
, “
Soft-core potentials in thermodynamic integration: Comparing one and two-step transformations
,”
J. Comput. Chem.
32
,
3253
(
2011
).
72.
D. A.
Pearlman
and
P. S.
Charifson
, “
Are free energy calculations useful in practice? A comparison with rapid scoring functions for the p38 map kinase protein system
,”
J. Med. Chem.
44
,
3417
(
2001
).
73.
J.
Michel
,
M. L.
Verdonk
, and
J. W.
Essex
, “
Protein-Ligand binding affinity predictions by implicit solvent Simulations: A tool for lead optimization?
,”
J. Med. Chem.
49
,
7427
(
2006
).
74.
S.
Izadi
,
R.
Anandakrishnan
, and
A. V.
Onufriev
, “
Building water models: A different approach
,”
J. Phys. Chem. Lett.
5
,
3863
(
2014
).
75.
C.
Tian
,
K.
Kasavajhala
,
K. A. A.
Belfon
,
L.
Raguette
,
H.
Huang
,
A. N.
Migues
,
J.
Bickel
,
Y.
Wang
,
J.
Pincay
,
Q.
Wu
, and
C.
Simmerling
, “
ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution
,”
J. Chem. Theory Comput.
16
,
528
(
2020
).

Supplementary Material

You do not currently have access to this content.