We report a molecular dynamics simulation study of dense ice modeled by the reactive force field (ReaxFF) potential, focusing on the possibility of phase changes between crystalline and plastic phases as observed in earlier simulation studies with rigid water models. It is demonstrated that the present model system exhibits phase transitions, or crossovers, among ice VII and two plastic ices with face-centered cubic (fcc) and body-centered cubic (bcc) lattice structures. The phase diagram derived from the ReaxFF potential is different from those of the rigid water models in that the bcc plastic phase lies on the high-pressure side of ice VII and does the fcc plastic phase on the low-pressure side of ice VII. The phase boundary between the fcc and bcc plastic phases on the pressure, temperature plane extends to the high-temperature region from the triple point of ice VII, fcc plastic, and bcc plastic phases. Proton hopping, i.e., delocalization of a proton, along between two neighboring oxygen atoms in dense ice is observed for the ReaxFF potential but only at pressures and temperatures both much higher than those at which ice VII–plastic ice transitions are observed.

1.
Y.
Takii
,
K.
Koga
, and
H.
Tanaka
, “
A plastic phase of water from computer simulation
,”
J. Chem. Phys.
128
,
204501
204508
(
2008
).
2.
J. L.
Aragones
,
M. M.
Conde
,
E. G.
Noya
, and
C.
Vega
, “
The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: The appearance of a plastic crystal phase
,”
Phys. Chem. Chem. Phys.
11
,
543
555
(
2009
).
3.
J. L.
Aragones
and
C.
Vega
, “
Plastic crystal phases of simple water models
,”
J. Chem. Phys.
130
,
244504
(
2009
).
4.
K.
Himoto
,
M.
Matsumoto
, and
H.
Tanaka
, “
Lattice- and network-structure in plastic ice
,”
Phys. Chem. Chem. Phys.
13
,
19876
19881
(
2011
).
5.
K.
Himoto
,
M.
Matsumoto
, and
H.
Tanaka
, “
Yet another criticality of water
,”
Phys. Chem. Chem. Phys.
16
,
5081
5087
(
2014
).
6.
I.
Skarmoutsos
,
S.
Mossa
, and
E.
Guardia
, “
The effect of polymorphism on the structural, dynamic and dielectric properties of plastic crystal water: A molecular dynamics simulation perspective
,”
J. Chem. Phys.
150
,
124506
124515
(
2019
).
7.
P.
Pruzan
,
J. C.
Chervin
, and
M.
Gauthier
, “
Raman spectroscopy investigation of ice VII and deuterated ice VII to 40 GPa disorder in ice VII
,”
Europhys. Lett.
13
,
81
87
(
1990
).
8.
P.
Pruzan
,
J. C.
Chervin
,
E.
Wolanin
,
B.
Canny
,
M.
Gauthier
, and
M.
Hanfland
, “
Phase diagram of ice in the VII-VIII-X domain. Vibrational and structural data for strongly compressed ice VIII
,”
J. Raman Spectrosc.
34
,
591
610
(
2003
).
9.
N.
Noguchi
and
T.
Okuchi
, “
Self-diffusion of protons in H2O ice VII at high pressures: Anomaly around 10 GPa
,”
J. Chem. Phys.
144
,
234503
234510
(
2016
).
10.
C.-S.
Zha
,
J. S.
Tse
, and
W. A.
Bassett
, “
New Raman measurements for H2O ice VII in the range of 300 cm−1 to 4000 cm−1 at pressures up to 120 GPa
,”
J. Chem. Phys.
145
,
124315
124319
(
2016
).
11.
M.
Somayazulu
,
J.
Shu
,
C.-S.
Zha
,
A. F.
Goncharov
,
O.
Tschauner
,
H.-k.
Mao
, and
R. J.
Hemley
, “
In situ high-pressure x-ray diffraction study of H2O ice VII
,”
J. Chem. Phys.
128
,
064510
064511
(
2008
).
12.
H.
Kadobayashi
,
H.
Hirai
,
T.
Matsuoka
,
Y.
Ohishi
, and
Y.
Yamamoto
, “
A possible existence of phase change of deuterated ice VII at about 11 GPa by X-ray and Raman studies
,”
J. Phys.: Conf. Ser.
500
,
182017-1
182017-6
(
2014
).
13.
M.
Guthrie
,
R.
Boehler
,
C. A.
Tulk
,
J. J.
Molaison
,
A. M.
dos Santos
,
K.
Li
, and
R. J.
Hemley
, “
Neutron diffraction observations of interstitial protons in dense ice
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
10552
10556
(
2013
).
14.
M.
Guthrie
,
R.
Boehler
,
J. J.
Molaison
,
B.
Haberl
,
A. M.
dos Santos
, and
C.
Tulk
, “
Structure and disorder in ice VII on the approach to hydrogen-bond symmetrization
,”
Phys. Rev. B
99
,
184112
(
2019
).
15.
T.
Meier
,
S.
Petitgirard
,
S.
Khandarkhaeva
, and
L.
Dubrovinsky
, “
Observation of nuclear quantum effects and hydrogen bond symmetrisation in high pressure ice
,”
Nat. Commun.
9
,
2766-1
2766-7
(
2018
).
16.
K.
Mochizuki
,
K.
Himoto
, and
M.
Matsumoto
, “
Diversity of transition pathways in the course of crystallization into ice VII
,”
Phys. Chem. Chem. Phys.
16
,
16419
16425
(
2014
).
17.
M.
Benoit
,
D.
Marx
, and
M.
Parrinello
, “
Tunnelling and zero-point motion in high-pressure ice
,”
Nature
392
,
258
261
(
1998
).
18.
M.
Benoit
,
A. H.
Romero
, and
D.
Marx
, “
Reassigning hydrogen-bond centering in dense ice
,”
Phys. Rev. Lett.
89
,
145501
(
2002
).
19.
J. A.
Morrone
,
L.
Lin
, and
R.
Car
, “
Tunneling and delocalization effects in hydrogen bonded systems: A study in position and momentum space
,”
J. Chem. Phys.
130
,
204511
204514
(
2009
).
20.
J.-A.
Hernandez
and
R.
Caracas
, “
Superionic-superionic phase transitions in body-centered cubic H2O ice
,”
Phys. Rev. Lett.
117
,
135503
(
2016
).
21.
Z.
Futera
and
N. J.
English
, “
Pressure dependence of structural properties of ice VII: An ab initio molecular-dynamics study
,”
J. Chem. Phys.
148
,
204505
(
2018
).
22.
T.
Ikeda
, “
First principles centroid molecular dynamics simulation of high pressure ices
,”
J. Chem. Phys.
148
,
102332
102339
(
2018
).
23.
J.-A.
Hernandez
and
R.
Caracas
, “
Proton dynamics and the phase diagram of dense water ice
,”
J. Chem. Phys.
148
,
214501
214512
(
2018
).
24.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
, “
ReaxFF: A reactive force field for hydrocarbons
,”
J. Phys. Chem. A
105
,
9396
9409
(
2001
).
25.
T. P.
Senftle
,
S.
Hong
,
M. M.
Islam
,
S. B.
Kylasa
,
Y, R.
Engel-Herbert
,
M. J.
Janik
,
H. M.
Aktulga
,
T.
Verstraelen
,
A.
Grama
, and
A. C. T.
van Duin
, “
The ReaxFF reactive force-field: Development, applications and future directions
,”
npj Comput. Mater.
2
,
15011
(
2016
).
26.
O.
Rahaman
,
A. C. T.
van Duin
,
W. A.
Goddard
 III
, and
D. J.
Doren
, “
Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization
,”
J. Phys. Chem. B
115
,
249
261
(
2011
).
27.
J. C.
Fogarty
,
H. M.
Aktulga
,
A. Y.
Grama
,
A. C. T.
van Duin
, and
S. A.
Pandit
, “
A reactive molecular dynamics simulation of the silica-water interface
,”
J. Chem. Phys.
132
,
174704
174711
(
2010
).
28.
M.
Sobrino Fernandez Mario
,
M.
Neek-Amal
, and
F. M.
Peeters
, “
AA-stacked bilayer square ice between graphene layers
,”
Phys. Rev. B
92
,
245428-1
245428-5
(
2015
).
29.
V.
Satarifard
,
M.
Mousaei
,
F.
Hadadi
,
J.
Dix
,
M. S.
Fernandez
,
P.
Carbone
,
J.
Beheshtian
,
F. M.
Peeters
, and
M.
Neek-Amal
, “
Reversible structural transition in nanoconfined ice
,”
Phys. Rev. B
95
,
064105
(
2017
).
30.
M.
Raju
,
A.
Duin
, and
M.
Ihme
, “
Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes
,”
Sci. Rep.
8
,
3851
(
2018
).
31.
K.
Koga
,
G. T.
Gao
,
H.
Tanaka
, and
X. C.
Zeng
, “
Formation of ordered ice nanotubes inside carbon nanotubes
,”
Nature
412
,
802
805
(
2001
).
32.
K.
Koga
,
X. C.
Zeng
, and
H.
Tanaka
, “
Freezing of confined water: A bilayer ice phase in hydrophobic nanopores
,”
Phys. Rev. Lett.
79
,
5262
(
1997
).
33.
R.
Zangi
and
A. E.
Mark
, “
Monolayer ice
,”
Phys. Rev. Lett.
91
,
025502
025504
(
2003
).
34.
Y.
Maniwa
,
H.
Kataura
,
M.
Abe
,
S.
Suzuki
,
Y.
Achiba
,
H.
Kira
, and
K.
Matsuda
, “
Phase transition in confined water inside carbon nanotubes
,”
J. Phys. Soc. Jpn.
71
,
2863
2866
(
2002
).
35.
G.
Algara-Siller
,
O.
Lehtinen
,
F. C.
Wang
,
R. R.
Nair
,
U.
Kaiser
,
H. A.
Wu
,
A. K.
Geim
, and
I. V.
Grigorieva
, “
Square ice in graphene nanocapillaries
,”
Nature
519
,
443
445
(
2015
).
36.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
37.
K.
Koga
and
H.
Tanaka
, “
Rearrangement dynamics of the hydrogen-bonded network of clathrate hydrates encaging polar guest
,”
J. Chem. Phys.
104
,
263
(
1996
).
38.
I.
Ohmine
and
H.
Tanaka
, “
Fluctuation, relaxations, and hydration in liquid water. Hydrogen-bond rearrangement dynamics
,”
Chem. Rev.
93
,
2545
2566
(
1993
).
39.
M. G.
Mazza
,
N.
Giovambattista
,
H. E.
Stanley
, and
F. W.
Starr
, “
Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water
,”
Phys. Rev. E
76
,
031203
(
2007
).
40.
L. E.
Bove
,
S.
Klotz
,
T.
Strässle
,
M.
Koza
,
J.
Teixeira
, and
A. M.
Saitta
, “
Translational and rotational diffusion in water in the gigapascal range
,”
Phys. Rev. Lett.
111
,
185901
185905
(
2013
).
41.
M.
French
,
M. P.
Desjarlais
, and
R.
Redmer
, “
Ab initio calculation of thermodynamic potentials and entropies for superionic water
,”
Phys. Rev. E
93
,
022140-1
022140-11
(
2016
).
42.
M.
Millot
,
F.
Coppari
,
J. R.
Rygg
,
A.
Correa Barrios
,
S.
Hamel
,
D. C.
Swift
, and
J. H.
Eggert
, “
Nanosecond X-ray diffraction of shock-compressed superionic water ice
,”
Nature
569
,
251
255
(
2019
).
43.
R. J.
Nelmes
,
J. S.
Loveday
,
W. G.
Marshall
,
G.
Hamel
,
J. M.
Besson
, and
S.
Klotz
, “
Multisite disordered structure of ice VII to 20 GPa
,”
Phys. Rev. Lett.
81
,
2719
2722
(
1998
).
44.
A. E.
Gleason
,
C. A.
Bolme
,
E.
Galtier
,
H. J.
Lee
,
E.
Granados
,
D. H.
Dolan
,
C. T.
Seagle
,
T.
Ao
,
S.
Ali
,
A.
Lazicki
,
D.
Swift
,
P.
Celliers
, and
W. L.
Mao
, “
Compression freezing kinetics of water to ice VII
,”
Phys. Rev. Lett.
119
,
025701
(
2017
).

Supplementary Material

You do not currently have access to this content.