The complexity associated with an epidemic defies any quantitatively reliable predictive theoretical scheme. Here, we pursue a generalized mathematical model and cellular automata simulations to study the dynamics of infectious diseases and apply it in the context of the COVID-19 spread. Our model is inspired by the theory of coupled chemical reactions to treat multiple parallel reaction pathways. We essentially ask the question: how hard could the time evolution toward the desired herd immunity (HI) be on the lives of people? We demonstrate that the answer to this question requires the study of two implicit functions, which are determined by several rate constants, which are time-dependent themselves. Implementation of different strategies to counter the spread of the disease requires a certain degree of a quantitative understanding of the time-dependence of the outcome. Here, we compartmentalize the susceptible population into two categories, (i) vulnerables and (ii) resilients (including asymptomatic carriers), and study the dynamical evolution of the disease progression. We obtain the relative fatality of these two sub-categories as a function of the percentages of the vulnerable and resilient population and the complex dependence on the rate of attainment of herd immunity. We attempt to study and quantify possible adverse effects of the progression rate of the epidemic on the recovery rates of vulnerables, in the course of attaining HI. We find the important result that slower attainment of the HI is relatively less fatal. However, slower progress toward HI could be complicated by many intervening factors.

1.
M.
Feinberg
,
Foundations of Chemical Reaction Network Theory
(
Springer
,
2019
).
2.
J. H.
Espenson
,
Chemical Kinetics and Reaction Mechanisms
(
McGraw-Hill
,
New York
,
1995
), Vol. 102.
3.
P.
Xu
, “
Applying chemical reaction transition theory to predict the latent transmission dynamics of coronavirus outbreak in China
,” UMBC Faculty Collection, 2020.
4.
L. A.
Meyers
,
M. E. J.
Newman
,
M.
Martin
, and
S.
Schrag
, “
Applying network theory to epidemics: Control measures for mycoplasma pneumoniae outbreaks
,”
Emerging Infect. Dis.
9
(
2
),
204
(
2003
).
5.
C.
Conradi
,
J.
Saez-Rodriguez
,
E. D.
Gilles
, and
J.
Raisch
, “
Chemical reaction network theory: A tool for systems biology
,” in
Proceedings of 5th MATHMOD
(
2006
), p.
SP22_267_P
.
6.
D.
Stauffer
and
A.
Aharony
,
Introduction to Percolation Theory
(
CRC Press
,
2018
).
7.
V. K. S.
Shante
and
S.
Kirkpatrick
, “
An introduction topercolation theory
,”
Adv. Phys.
20
(
85
),
325
357
(
1971
).
8.
W.-H.
Chen
,
U.
Strych
,
P. J.
Hotez
, and
M. E.
Bottazzi
, “
The SARS-CoV-2 vaccine pipeline: An overview
,”
Curr. Trop. Med. Rep.
7
,
61
64
(
2020
).
9.
K.
Prem
,
Y.
Liu
,
T. W.
Russell
,
A. J.
Kucharski
,
R. M.
Eggo
,
N.
Davies
,
S.
Flasche
,
S.
Clifford
,
C. A.
Pearson
, and
J. D.
Munday
, “
The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study
,”
Lancet Public Health
5
,
e261
(
2020
).
10.
M.
Shen
,
Z.
Peng
,
Y.
Guo
,
Y.
Xiao
, and
L.
Zhang
, “
Lockdown may partially halt the spread of 2019 novel coronavirus in Hubei province, China
” (published online, 2020), .
11.
Y.
Kamikubo
and
A.
Takahashi
, “
Epidemiological tools that predict partial herd immunity to SARS coronavirus 2
” (published online, 2020), .
12.
P. E. M.
Fine
, “
Herd immunity: History, theory, practice
,”
Epidemiol. Rev.
15
(
2
),
265
302
(
1993
).
13.
R. M.
Anderson
and
R. M.
May
, “
Vaccination and herd immunity to infectious diseases
,”
Nature
318
(
6044
),
323
329
(
1985
).
14.
T. J.
John
and
R.
Samuel
, “
Herd immunity and herd effect: New insights and definitions
,”
Eur. J. Epidemiol.
16
(
7
),
601
606
(
2000
).
15.
N. T.
Georgette
, “
Predicting the herd immunity threshold during an outbreak: A recursive approach
,”
PLoS One
4
(
1
),
e4168
(
2009
).
16.
E. S.
McBryde
, “
Network structure can play a role in vaccination thresholds and herd immunity: A simulation using a network mathematical model
,”
Clin. Infect. Dis.
48
(
5
),
685
686
(
2009
).
17.
D.
Wrapp
,
N.
Wang
,
K. S.
Corbett
,
J. A.
Goldsmith
,
C.-L.
Hsieh
,
O.
Abiona
,
B. S.
Graham
, and
J. S.
McLellan
, “
Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
,”
Science
367
(
6483
),
1260
1263
(
2020
).
18.
R.
Singh
and
R.
Adhikari
, “
Age-structured impact of social distancing on the COVID-19 epidemic in India
,” arXiv:2003.12055 (
2020
).
19.
S.
Mukherjee
,
S.
Mondal
, and
B.
Bagchi
, “
Dynamical theory and cellular automata simulations of pandemic spread: Understanding different temporal patterns of infections
,” arXiv:2004.14787 (
2020
).
20.
D. J.
Daley
and
J.
Gani
,
Epidemic Modelling: An Introduction
(
Cambridge University Press
,
2001
), Vol. 15.
21.
W. O.
Kermack
and
A. G.
McKendrick
, “
A contribution to the mathematical theory of epidemics
,”
Proc. R. Soc. London, Ser. A
115
(
772
),
700
721
(
1927
).
22.
A.
Skvortsov
,
R.
Connell
,
P.
Dawson
, and
R.
Gailis
, “
Epidemic modelling: Validation of agent-based simulation by using simple mathematical models
,” in
MODSIM 2007 International Congress on Modelling and Simulation
(
Modelling and Simulation Society of Australia and New Zealand
,
Citeseer
,
2007
), pp.
657
662
.
23.
D. S.
Jones
,
M.
Plank
, and
B. D.
Sleeman
,
Differential Equations and Mathematical Biology
(
CRC Press
,
2009
).
24.
R. M.
Anderson
and
R. M.
May
, “
Population biology of infectious diseases: Part I
,”
Nature
280
(
5721
),
361
367
(
1979
).
25.
K.
Dietz
, “
The estimation of the basic reproduction number for infectious diseases
,”
Stat. Methods Med. Res.
2
(
1
),
23
41
(
1993
).
26.
O.
Diekmann
and
J. A. P.
Heesterbeek
,
Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation
(
John Wiley & Sons
,
2000
), Vol. 5.
27.
S.
Zhang
,
M.
Diao
,
W.
Yu
,
L.
Pei
,
Z.
Lin
, and
D.
Chen
, “
Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the diamond princess cruise ship: A data-driven analysis
,”
Int. J. Infect. Dis.
93
,
201
204
(
2020
).
28.
B.
Tang
,
N. L.
Bragazzi
,
Q.
Li
,
S.
Tang
,
Y.
Xiao
, and
J.
Wu
, “
An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov)
,”
Infect. Dis. Modell.
5
,
248
255
(
2020
).
29.
T.
Britton
,
F.
Ball
, and
P.
Trapman
, “
A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2
,”
Science
369
,
846
(
2020
).
30.
R.
Aguas
,
R. M.
Corder
,
J. G.
King
,
G.
Goncalves
,
M. U.
Ferreira
, and
M. G. M.
Gomes
, “
Herd immunity thresholds for SARS-CoV-2 estimated from unfolding epidemics
” (published online, 2020), .
31.
J.
Gunawardena
, Chemical reaction network theory for in-silico biologists. Notes available for download at http://vcp.med.harvard.edu/papers/crnt.pdf,
2003
.
32.
F.
Horn
and
R.
Jackson
, “
General mass action kinetics
,”
Arch. Ration. Mech. Anal.
47
(
2
),
81
116
(
1972
).
33.
J.
Yang
,
Y.
Zheng
,
X.
Gou
,
K.
Pu
,
Z.
Chen
,
Q.
Guo
,
R.
Ji
,
H.
Wang
,
Y.
Wang
, and
Y.
Zhou
, “
Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: A systematic review and meta-analysis
,”
Int. J. Infect. Dis.
94
,
91
(
2020
).
34.
J.
Wangping
,
H.
Ke
,
S.
Yang
,
C.
Wenzhe
,
W.
Shengshu
,
Y.
Shanshan
,
W.
Jianwei
,
K.
Fuyin
,
T.
Penggang
, and
L.
Jing
, “
Extended SIR prediction of the epidemics trend of COVID-19 in Italy and compared with Hunan, China
,”
Front. Med.
7
,
169
(
2020
).
35.
Q.
Lin
,
S.
Zhao
,
D.
Gao
,
Y.
Lou
,
S.
Yang
,
S. S.
Musa
,
M. H.
Wang
,
Y.
Cai
,
W.
Wang
, and
L.
Yang
, “
A conceptual model for the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China with individual reaction and governmental action
,”
Int. J. Infect. Dis.
93
,
211
(
2020
).
36.
C. A.
Hollingsworth
,
P. G.
Seybold
,
L. B.
Kier
, and
C.-K.
Cheng
, “
First-order stochastic cellular automata simulations of the lindemann mechanism
,”
Int. J. Chem. Kin.
36
(
4
),
230
237
(
2004
).
37.
P. G.
Seybold
,
L. B.
Kier
, and
C.-K.
Cheng
, “
Stochastic cellular automata models of molecular excited-state dynamics
,”
J. Phys. Chem. A
102
(
6
),
886
891
(
1998
).
38.
S.
Wolfram
, “
Statistical mechanics of cellular automata
,”
Rev. Mod. Phys.
55
(
3
),
601
(
1983
).
39.
M.
Bartolozzi
and
A. W. J.
Thomas
, “
Stochastic cellular automata model for stock market dynamics
,”
Phys. Rev. E
69
(
4
),
046112
(
2004
).
40.
B. S.
Soares-Filho
,
G.
Coutinho Cerqueira
, and
C.
Lopes Pennachin
, “
DINAMICA—A stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier
,”
Ecol. Modell.
154
(
3
),
217
235
(
2002
).
41.
A.
Goltsev
,
F.
De Abreu
,
S.
Dorogovtsev
, and
J. J.
Mendes
, “
Stochastic cellular automata model of neural networks
,”
Phys. Rev. E
81
(
6
),
061921
(
2010
).
42.
R. M.
Almeida
and
E. E. N.
Macau
, “
Stochastic cellular automata model for wildland fire spread dynamics
,”
J. Phys.: Conf. Ser.
285
,
012038
(
2011
).
43.
C.
Vannozzi
,
D.
Fiorentino
,
M.
D’Amore
,
D. S.
Rumshitzki
,
A.
Dress
, and
R.
Mauri
, “
Cellular automata model of phase transition in binary mixtures
,”
Ind. Eng. Chem. Res.
45
(
8
),
2892
2896
(
2006
).
44.
J. R.
Weimar
, “
Cellular automata approaches to enzymatic reaction networks
,” in
International Conference on Cellular Automata
(
Springer
,
2002
), pp.
294
303
.
45.
L.
Qian
and
E.
Winfree
, “
Parallel and scalable computation and spatial dynamics with DNA-based chemical reaction networks on a surface
,” in
International Workshop on DNA-Based Computers
(
Springer
,
2014
), pp.
114
131
.
46.
D.
Scalise
and
R.
Schulman
, “
Emulating cellular automata in chemical reaction–diffusion networks
,”
Nat. Comput.
15
(
2
),
197
214
(
2016
).
47.
L. B.
Kier
,
D.
Bonchev
, and
G. A.
Buck
, “
Modeling biochemical networks: A cellular-automata approach
,”
Chem. Biodiversity
2
(
2
),
233
243
(
2005
).
48.
D.
Bonchev
,
S.
Thomas
,
A.
Apte
, and
L. B.
Kier
, “
Cellular automata modelling of biomolecular networks dynamics
,”
SAR QSAR Environ. Res.
21
(
1-2
),
77
102
(
2010
).
49.
B.
Pfeifer
,
K.
Kugler
,
M. M.
Tejada
,
C.
Baumgartner
,
M.
Seger
,
M.
Osl
,
M.
Netzer
,
M.
Handler
,
A.
Dander
, and
M.
Wurz
, “
A cellular automaton framework for infectious disease spread simulation
,”
Open Med. Inf. J.
2
,
70
(
2008
).
50.
S.
Zhong
,
Q.
Huang
, and
D.
Song
, “
Simulation of the spread of infectious diseases in a geographical environment
,”
Sci. China, Ser. D: Earth Sci.
52
(
4
),
550
561
(
2009
).
51.
S.
Athithan
,
V. P.
Shukla
, and
S. R.
Biradar
, “
Dynamic cellular automata based epidemic spread model for population in patches with movement
,”
J. Comput. Environ. Sci.
2014
,
518053
.
52.
S. H.
White
,
A. M.
del Rey
, and
G. R.
Sanchez
, “
Using cellular automata to simulate epidemic diseases
,”
Appl. Math. Sci.
3
(
20
),
959
968
(
2009
).
53.
I.
Tiwari
,
P.
Sarin
, and
P.
Parmananda
, “
Predictive modeling of disease propagation in a mobile, connected community using cellular automata
,”
Chaos
30
(
8
),
081103
(
2020
).
54.
L. H. A.
Monteiro
,
D. M.
Gandini
, and
P. H. T.
Schimit
, “
The influence of immune individuals in disease spread evaluated by cellular automaton and genetic algorithm
,”
Comput. Methods Programs Biomed.
196
,
105707
(
2020
).
55.
S.
Fu
and
G.
Milne
, “
Epidemic modelling using cellular automata
,” in
Proceedings of the Australian Conference on Artificial Life
,
2003
.
56.
S. H.
White
,
A. M.
Del Rey
, and
G. R.
Sánchez
, “
Modeling epidemics using cellular automata
,”
Appl. Math. Comput.
186
(
1
),
193
202
(
2007
).
57.
G. C.
Sirakoulis
,
I.
Karafyllidis
, and
A.
Thanailakis
, “
A cellular automaton model for the effects of population movement and vaccination on epidemic propagation
,”
Ecol. Modell.
133
(
3
),
209
223
(
2000
).
58.
A.
Remuzzi
and
G.
Remuzzi
, “
COVID-19 and Italy: What next?
,”
Lancet
395
,
1225
(
2020
).
59.
J. T.
Wu
,
K.
Leung
,
M.
Bushman
,
N.
Kishore
,
R.
Niehus
,
P. M.
de Salazar
,
B. J.
Cowling
,
M.
Lipsitch
, and
G. M.
Leung
, “
Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China
,”
Nat. Med.
26
,
506
510
(
2020
).
60.
R.
Verity
;
L. C.
Okell
,
I.
Dorigatti
,
P.
Winskill
,
C.
Whittaker
,
N.
Imai
,
G.
Cuomo-Dannenburg
,
H.
Thompson
,
P. G.
Walker
, and
H.
Fu
, “
Estimates of the severity of coronavirus disease 2019: A model-based analysis
,”
Lancet Infect. Dis.
20
,
669
(
2020
).
61.
S.
Ruan
, “
Likelihood of survival of coronavirus disease 2019
,”
Lancet. Infect. Dis.
20
,
630
(
2020
).
62.
L.
Fang
,
G.
Karakiulakis
, and
M.
Roth
, “
Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?
,”
Lancet Respir. Med.
8
(
4
),
e21
(
2020
).
63.
E.
Livingston
and
K.
Bucher
, “
Coronavirus disease 2019 (COVID-19) in Italy
,”
JAMA
323
(
14
),
1335
(
2020
).
64.
G.
Onder
,
G.
Rezza
, and
S. J. J.
Brusaferro
, “
Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy
,”
JAMA
323
,
1775
(
2020
).
65.
A. A.
Saberi
, “
Recent advances in percolation theory and its applications
,”
Phys. Rep.
578
,
1
32
(
2015
).
66.
C. J. E.
Metcalf
,
M.
Ferrari
,
A. L.
Graham
, and
B. T.
Grenfell
, “
Understanding herd immunity
,”
Trends Immunol.
36
(
12
),
753
755
(
2015
).
67.
H. E.
Randolph
and
L. B.
Barreiro
, “
Herd immunity: Understanding COVID-19
,”
Immunity
52
(
5
),
737
741
(
2020
).
You do not currently have access to this content.