Many natural substances and drugs are radical scavengers that prevent the oxidative damage to fundamental cell components. This process may occur via different mechanisms, among which, one of the most important, is hydrogen atom transfer. The feasibility of this process can be assessed in silico using quantum mechanics to compute ΔGHAT. This approach is accurate, but time consuming. The use of machine learning (ML) allows us to reduce tremendously the computational cost of the assessment of the scavenging properties of a potential antioxidant, almost without affecting the quality of the results. However, in many ML implementations, the description of the relevant features of a molecule in a machine-friendly language is still the most challenging aspect. In this work, we present a newly developed machine-readable molecular representation aimed at the application of automatized ML algorithms. In particular, we show an application on the calculation of ΔGHAT.

1.
M.
Gomberg
, “
An instance of trivalent carbon: Triphenylmethyl
,”
J. Am. Chem. Soc.
22
,
757
771
(
1900
).
2.
M. S.
Kharasch
and
F. R.
Mayo
, “
The peroxide effect in the addition of reagents to unsaturated compounds. I. The addition of hydrogen bromide to allyl bromide
,”
J. Am. Chem. Soc.
55
,
2468
2496
(
1933
).
3.
H.
Sies
, “
Oxidative stress: A concept in redox biology and medicine
,”
Redox Biol.
4
,
180
183
(
2015
).
4.
H.
Sies
, “
Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress
,”
Redox Biol.
11
,
613
619
(
2017
).
5.
H.
Sies
, “
On the history of oxidative stress: Concept and some aspects of current development
,”
Curr. Opin. Toxicol.
7
,
122
126
(
2018
).
6.
J.
Kehrer
,
J.
Robertson
, and
C.
Smith
, “
1.14–free radicals and reactive oxygen species
,” in
Comprehensive Toxicology
, 2nd ed., edited by
C. A.
McQueen
(
Elsevier
,
Oxford
,
2010
), pp.
277
307
.
7.
J. P.
Silva
and
O. P.
Coutinho
, “
Free radicals in the regulation of damage and cell death–basic mechanisms and prevention
,”
Drug Discoveries Ther.
4
,
144
167
(
2010
).
8.
D.
Dreher
and
A. F.
Junod
, “
Role of oxygen free radicals in cancer development
,”
Eur. J. Cancer
32
,
30
38
(
1996
).
9.
B.
Halliwell
, “
Biochemistry of oxidative stress
,”
Biochem. Soc. Trans.
35
,
1147
1150
(
2007
).
10.
S.
Reuter
,
S. C.
Gupta
,
M. M.
Chaturvedi
, and
B. B.
Aggarwal
, “
Oxidative stress, inflammation, and cancer: How are they linked?
,”
Free Radical Biol. Med.
49
,
1603
1616
(
2010
).
11.
A.
Phaniendra
,
D. B.
Jestadi
, and
L.
Periyasamy
, “
Free radicals: Properties, sources, targets, and their implication in various diseases
,”
Indian J. Clin. Biochem.
30
,
11
26
(
2015
).
12.
B.
Uttara
,
A.
Singh
,
P.
Zamboni
, and
R.
Mahajan
, “
Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options
,”
Curr. Neuropharmacol.
7
,
65
74
(
2009
).
13.
L.
Orian
and
S.
Toppo
, “
Organochalcogen peroxidase mimetics as potential drugs: A long story of a promise still unfulfilled
,”
Free Radical Biol. Med.
66
,
65
74
(
2014
).
14.
L. P.
Wolters
and
L.
Orian
, “
Peroxidase activity of organic selenides: Mechanistic insights from quantum chemistry
,”
Curr. Org. Chem.
20
,
189
197
(
2016
).
15.
M.
Dalla Tiezza
,
G.
Ribaudo
, and
L.
Orian
, “
Organodiselenides: Organic catalysis and drug design learning from glutathione peroxidase
,”
Curr. Org. Chem.
23
,
1381
1402
(
2019
).
16.
K.
Neha
,
M. R.
Haider
,
A.
Pathak
, and
M. S.
Yar
, “
Medicinal prospects of antioxidants: A review
,”
Eur. J. Med. Chem.
178
,
687
704
(
2019
).
17.
D.
Komsiiska
, “
Oxidative stress and stroke: A review of upstream and downstream antioxidant therapeutic options
,”
Comput. Clin. Pathol.
28
,
915
926
(
2019
).
18.
P.-G.
Pietta
, “
Flavonoids as antioxidants
,”
J. Nat. Prod.
63
,
1035
1042
(
2000
).
19.
A. N.
Panche
,
A. D.
Diwan
, and
S. R.
Chandra
, “
Flavonoids: An overview
,”
J. Nutr. Sci.
5
,
e47
(
2016
).
20.
V.
Krishnamachari
,
L. H.
Levine
, and
P. W.
Paré
, “
Flavonoid oxidation by the radical generator AIBN: A unified mechanism for quercetin radical scavenging
,”
J. Agric. Food Chem.
50
,
4357
4363
(
2002
).
21.
D.
Procházková
,
I.
Boušová
, and
N.
Wilhelmová
, “
Antioxidant and prooxidant properties of flavonoids
,”
Fitoterapia
82
,
513
523
(
2011
).
22.
G.
Cao
,
E.
Sofic
, and
R. L.
Prior
, “
Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships
,”
Free Radical Biol. Med.
22
,
749
760
(
1997
).
23.
S.
Eghbaliferiz
and
M.
Iranshahi
, “
Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals
,”
Phytother. Res.
30
,
1379
1391
(
2016
).
24.
F.
Di Meo
,
V.
Lemaur
,
J.
Cornil
,
R.
Lazzaroni
,
J.-L.
Duroux
,
Y.
Olivier
, and
P.
Trouillas
, “
Free radical scavenging by natural polyphenols: Atom versus electron transfer
,”
J. Phys. Chem. A
117
,
2082
2092
(
2013
).
25.
S. B.
Nimse
and
D.
Pal
, “
Free radicals, natural antioxidants, and their reaction mechanisms
,”
RSC Adv.
5
,
27986
28006
(
2015
).
26.
A.
Galano
,
D. X.
Tan
, and
R. J.
Reiter
, “
Melatonin as a natural ally against oxidative stress: A physicochemical examination
,”
J. Pineal Res.
51
,
1
16
(
2011
).
27.
A.
Galano
and
R. J.
Reiter
, “
Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection
,”
J. Pineal Res.
65
,
e12514
(
2018
).
28.
A.
Galano
and
J.
Raúl Alvarez-Idaboy
, “
Computational strategies for predicting free radical scavengers’ protection against oxidative stress: Where are we and what might follow?
,”
Int. J. Quantum Chem.
119
,
e25665
(
2019
).
29.
A.
Galano
and
J. R.
Alvarez-Idaboy
, “
A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity
,”
J. Comput. Chem.
34
,
2430
2445
(
2013
).
30.
A.
Galano
, “
Mechanism and kinetics of the hydroxyl and hydroperoxyl radical scavenging activity of N-acetylcysteine amide
,”
Theor. Chem. Acc.
130
,
51
60
(
2011
).
31.
A.
Galano
and
A.
Martínez
, “
Capsaicin, a tasty free radical scavenger: Mechanism of action and kinetics
,”
J. Phys. Chem. B
116
,
1200
1208
(
2012
).
32.
S.
Curtarolo
,
G. L. W.
Hart
,
M. B.
Nardelli
,
N.
Mingo
,
S.
Sanvito
, and
O.
Levy
, “
The high-throughput highway to computational materials design
,”
Nat. Mater.
12
,
191
201
(
2013
).
33.
M.
Rupp
,
R.
Ramakrishnan
, and
O. A.
von Lilienfeld
, “
Machine learning for quantum mechanical properties of atoms in molecules
,”
J. Phys. Chem. Lett.
6
,
3309
3313
(
2015
).
34.
D.
Xue
,
P. V.
Balachandran
,
J.
Hogden
,
J.
Theiler
,
D.
Xue
, and
T.
Lookman
, “
Accelerated search for materials with targeted properties by adaptive design
,”
Nat. Commun.
7
,
11241
(
2016
).
35.
F. M.
Paruzzo
,
A.
Hofstetter
,
F.
Musil
,
S.
De
,
M.
Ceriotti
, and
L.
Emsley
, “
Chemical shifts in molecular solids by machine learning
,”
Nat. Commun.
9
,
4501
(
2018
); arXiv:1805.11541.
36.
M.
Rupp
, “
Machine learning for quantum mechanics in a nutshell
,”
Int. J. Quantum Chem.
115
,
1058
1073
(
2015
).
37.
L.
Hu
,
X.
Wang
,
L.
Wong
, and
G.
Chen
, “
Combined first-principles calculation and neural-network correction approach for heat of formation
,”
J. Chem. Phys.
119
,
11501
11507
(
2003
).
38.
M.
Karthikeyan
,
R. C.
Glen
, and
A.
Bender
, “
General melting point prediction based on a diverse compound data set and artificial neural networks
,”
J. Chem. Inf. Model.
45
,
581
590
(
2005
).
39.
M.
Misra
,
D.
Andrienko
,
B.
Baumeier
,
J.-L.
Faulon
, and
O. A.
von Lilienfeld
, “
Toward quantitative structure–property relationships for charge transfer rates of polycyclic aromatic hydrocarbons
,”
J. Chem. Theory Comput.
7
,
2549
2555
(
2011
).
40.
A.
Lusci
,
G.
Pollastri
, and
P.
Baldi
, “
Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
,”
J. Chem. Inf. Model.
53
,
1563
1575
(
2013
).
41.
G.
Pilania
,
C.
Wang
,
X.
Jiang
,
S.
Rajasekaran
, and
R.
Ramprasad
, “
Accelerating materials property predictions using machine learning
,”
Sci. Rep.
3
,
2810
(
2013
).
42.
A. V.
Marenich
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions
,”
J. Phys. Chem. B
113
,
6378
6396
(
2009
).
43.
E. O.
Pyzer-Knapp
,
K.
Li
, and
A.
Aspuru-Guzik
, “
Learning from the harvard clean energy project: The use of neural networks to accelerate materials discovery
,”
Adv. Funct. Mater.
25
,
6495
6502
(
2015
).
44.
X.
Zheng
,
L.
Hu
,
X.
Wang
, and
G.
Chen
, “
A generalized exchange-correlation functional: The neural-networks approach
,”
Chem. Phys. Lett.
390
,
186
192
(
2004
).
45.
R. M.
Balabin
and
E. I.
Lomakina
, “
Support vector machine regression (LS-SVM)–An alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?
,”
Phys. Chem. Chem. Phys.
13
,
11710
11718
(
2011
).
46.
T. F. G. G.
Cova
and
A. A. C. C.
Pais
, “
Deep learning for deep chemistry: Optimizing the prediction of chemical patterns
,”
Front. Chem.
7
,
809
(
2019
).
47.
R.
Winter
,
F.
Montanari
,
F.
Noé
, and
D.-A.
Clevert
, “
Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations
,”
Chem. Sci.
10
,
1692
1701
(
2019
).
48.
G.
Ribaudo
,
M.
Bortoli
,
C.
Pavan
,
G.
Zagotto
, and
L.
Orian
, “
Antioxidant potential of psychotropic drugs: From clinical evidence to in vitro and in vivo assessment and toward a new challenge for in silico molecular design
,”
Antioxidants
9
,
714
(
2020
).
49.
G. A.
Behr
,
J. C. F.
Moreira
, and
B. N.
Frey
, “
Preclinical and clinical evidence of antioxidant effects of antidepressant agents: Implications for the pathophysiology of major depressive disorder
,”
Oxid. Med. Cell. Longevity
2012
,
1
.
50.
H.
Erman
,
I.
Guner
,
M. O.
Yaman
,
D. D.
Uzun
,
R.
Gelisgen
,
U.
Aksu
,
N.
Yelmen
,
G.
Sahin
, and
H.
Uzun
, “
The effects of fluoxetine on circulating oxidative damage parameters in rats exposed to aortic ischemia–reperfusion
,”
Eur. J. Pharmacol.
749
,
56
61
(
2015
).
51.
M.
Herbet
,
M.
Gawrońska-Grzywacz
,
M.
Izdebska
, and
I.
Piątkowska-Chmiel
, “
Effect of the interaction between atorvastatin and selective serotonin reuptake inhibitors on the blood redox equilibrium
,”
Exp. Ther. Med.
12
,
3440
3444
(
2016
).
52.
V.
Caiaffo
,
B. D.
Oliveira
,
F. B.
de Sá
, and
J.
Evêncio Neto
, “
Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine
,”
Pharmacol. Res. Perspect.
4
,
e00231
(
2016
).
53.
M.
Bortoli
,
M.
Dalla Tiezza
,
C.
Muraro
,
C.
Pavan
,
G.
Ribaudo
,
A.
Rodighiero
,
C.
Tubaro
,
G.
Zagotto
, and
L.
Orian
, “
Psychiatric disorders and oxidative injury: Antioxidant effects of zolpidem therapy disclosed in silico
,”
Comput. Struct. Biotechnol. J.
17
,
311
318
(
2019
).
54.
C.
Muraro
,
M.
Dalla Tiezza
,
C.
Pavan
,
G.
Ribaudo
,
G.
Zagotto
, and
L.
Orian
, “
Major depressive disorder and oxidative stress: In silico investigation of fluoxetine activity against ROS
,”
Appl. Sci.
9
,
3631
(
2019
).
55.
G.
Ribaudo
,
M.
Bortoli
,
A.
Ongaro
,
E.
Oselladore
,
A.
Gianoncelli
,
G.
Zagotto
, and
L.
Orian
, “
Fluoxetine scaffold to design tandem molecular antioxidants and green catalysts
,”
RSC Adv.
10
,
18583
18593
(
2020
).
56.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision B.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
57.
Y.
Zhao
and
D. G.
Truhlar
, “
A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
,”
J. Chem. Phys.
125
,
194101
(
2006
).
58.
Y.
Zhao
and
D. G.
Truhlar
, “
The m06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four m06-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
,
215
241
(
2008
).
59.
A.
Galano
, “
On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals
,”
Phys. Chem. Chem. Phys.
13
,
7178
7188
(
2011
).
60.
B.
Scholkopf
and
A. J.
Smola
,
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
(
MIT Press
,
Cambridge, MA, USA
,
2001
).
61.
O.
Dangles
and
J.-A.
Fenger
, “
The chemical reactivity of anthocyanins and its consequences in food science and nutrition
,”
Molecules
23
,
1970
(
2018
).
62.
Y.
Noda
,
T.
Kaneyuki
,
A.
Mori
, and
L.
Packer
, “
Antioxidant activities of pomegranate fruit extract and its anthocyanidins: Delphinidin, cyanidin, and pelargonidin
,”
J. Agric. Food Chem.
50
,
166
171
(
2002
).
63.
J.-M.
Kim
,
J.-S.
Kim
,
H.
Yoo
,
M.-G.
Choung
, and
M.-K.
Sung
, “
Effects of black soybean [glycine max (L.) merr.] seed coats and its anthocyanidins on colonic inflammation and cell proliferation in vitro and in vivo
,”
J. Agric. Food Chem.
56
,
8427
8433
(
2008
).
64.
S.
Meiers
,
M.
Kemény
,
U.
Weyand
,
R.
Gastpar
,
E.
von Angerer
, and
D.
Marko
, “
The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor
,”
J. Agric. Food Chem.
49
,
958
962
(
2001
).

Supplementary Material

You do not currently have access to this content.