Molecular dynamics simulations require barostats to be performed at a constant pressure. The usual recipe is to employ the Berendsen barostat first, which displays a first-order volume relaxation efficient in equilibration but results in incorrect volume fluctuations, followed by a second-order or a Monte Carlo barostat for production runs. In this paper, we introduce stochastic cell rescaling, a first-order barostat that samples the correct volume fluctuations by including a suitable noise term. The algorithm is shown to report volume fluctuations compatible with the isobaric ensemble and its anisotropic variant is tested on a membrane simulation. Stochastic cell rescaling can be straightforwardly implemented in the existing codes and can be used effectively in both equilibration and production phases.

1.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Acedemic Press
,
San Diego
,
2001
).
2.
H. C.
Andersen
, “
Molecular dynamics simulations at constant pressure and/or temperature
,”
J. Chem. Phys.
72
,
2384
2393
(
1980
).
3.
M.
Parrinello
and
A.
Rahman
, “
Crystal structure and pair potentials: A molecular-dynamics study
,”
Phys. Rev. Lett.
45
,
1196
(
1980
).
4.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
5.
S.
Nosé
and
M. L.
Klein
, “
Constant pressure molecular dynamics for molecular systems
,”
Mol. Phys.
50
,
1055
1076
(
1983
).
6.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
7.
S.
Melchionna
,
G.
Ciccotti
, and
B.
Lee Holian
, “
Hoover NPT dynamics for systems varying in shape and size
,”
Mol. Phys.
78
,
533
544
(
1993
).
8.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
, “
Constant pressure molecular dynamics algorithms
,”
J. Chem. Phys.
101
,
4177
4189
(
1994
).
9.
Y.
Zhang
,
S. E.
Feller
,
B. R.
Brooks
, and
R. W.
Pastor
, “
Computer simulation of liquid/liquid interfaces. I. Theory and application to octane/water
,”
J. Chem. Phys.
103
,
10252
10266
(
1995
).
10.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
, “
Explicit reversible integrators for extended systems dynamics
,”
Mol. Phys.
87
,
1117
1157
(
1996
).
11.
J. B.
Sturgeon
and
B. B.
Laird
, “
Symplectic algorithm for constant-pressure molecular dynamics using a Nosé–Poincaré thermostat
,”
J. Chem. Phys.
112
,
3474
3482
(
2000
).
12.
G.
Kalibaeva
,
M.
Ferrario
, and
G.
Ciccotti
, “
Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial
,”
Mol. Phys.
101
,
765
778
(
2003
).
13.
V.
Marry
and
G.
Ciccotti
, “
Trotter derived algorithms for molecular dynamics with constraints: Velocity Verlet revisited
,”
J. Comput. Phys.
222
,
428
440
(
2007
).
14.
G.
Bussi
,
T.
Zykova-Timan
, and
M.
Parrinello
, “
Isothermal-isobaric molecular dynamics using stochastic velocity rescaling
,”
J. Chem. Phys.
130
,
074101
(
2009
).
15.
T.-Q.
Yu
,
J.
Alejandre
,
R.
López-Rendón
,
G. J.
Martyna
, and
M. E.
Tuckerman
, “
Measure-preserving integrators for molecular dynamics in the isothermal–isobaric ensemble derived from the Liouville operator
,”
Chem. Phys.
370
,
294
305
(
2010
).
16.
P.
Raiteri
,
J. D.
Gale
, and
G.
Bussi
, “
Reactive force field simulation of proton diffusion in BaZrO3 using an empirical valence bond approach
,”
J. Phys.: Condens. Matter
23
,
334213
(
2011
).
17.
R. A.
Lippert
,
C.
Predescu
,
D. J.
Ierardi
,
K. M.
Mackenzie
,
M. P.
Eastwood
,
R. O.
Dror
, and
D. E.
Shaw
, “
Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure
,”
J. Chem. Phys.
139
,
164106
(
2013
).
18.
S. E.
Feller
,
Y.
Zhang
,
R. W.
Pastor
, and
B. R.
Brooks
, “
Constant pressure molecular dynamics simulation: The Langevin piston method
,”
J. Chem. Phys.
103
,
4613
4621
(
1995
).
19.
A.
Kolb
and
B.
Dünweg
, “
Optimized constant pressure stochastic dynamics
,”
J. Chem. Phys.
111
,
4453
4459
(
1999
).
20.
D.
Quigley
and
M. I. J.
Probert
, “
Langevin dynamics in constant pressure extended systems
,”
J. Chem. Phys.
120
,
11432
11441
(
2004
).
21.
N.
Grønbech-Jensen
and
O.
Farago
, “
Constant pressure and temperature discrete-time Langevin molecular dynamics
,”
J. Chem. Phys.
141
,
194108
(
2014
).
22.
M.
Di Pierro
,
R.
Elber
, and
B.
Leimkuhler
, “
A stochastic algorithm for the isobaric–isothermal ensemble with Ewald summations for all long range forces
,”
J. Chem. Theory Comput.
11
,
5624
5637
(
2015
).
23.
X.
Gao
,
J.
Fang
, and
H.
Wang
, “
Sampling the isothermal-isobaric ensemble by Langevin dynamics
,”
J. Chem. Phys.
144
,
124113
(
2016
).
24.
S.
Cajahuaringa
and
A.
Antonelli
, “
Stochastic sampling of the isothermal-isobaric ensemble: Phase diagram of crystalline solids from molecular dynamics simulation
,”
J. Chem. Phys.
149
,
064114
(
2018
).
25.
K.-H.
Chow
and
D. M.
Ferguson
, “
Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling
,”
Comput. Phys. Commun.
91
,
283
289
(
1995
).
26.
J.
Åqvist
,
P.
Wennerström
,
M.
Nervall
,
S.
Bjelic
, and
B. O.
Brandsdal
, “
Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm
,”
Chem. Phys. Lett.
384
,
288
294
(
2004
).
27.
M.
Harger
and
P.
Ren
, “
Virial-based Berendsen barostat on GPUs using AMOEBA in Tinker-OpenMM
,”
Results Chem.
1
,
100004
(
2019
).
28.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
29.
E.
Braun
,
J.
Gilmer
,
H. B.
Mayes
,
D. L.
Mobley
,
J. I.
Monroe
,
S.
Prasad
, and
D. M.
Zuckerman
, “
Best practices for foundations in molecular simulations [article v1.0]
,”
Living J. Comput. Mol. Sci.
1
,
5957
(
2019
).
30.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
31.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1-2
,
19
25
(
2015
).
32.
A.
Rizzi
,
T.
Jensen
,
D. R.
Slochower
,
M.
Aldeghi
,
V.
Gapsys
,
D.
Ntekoumes
,
S.
Bosisio
,
M.
Papadourakis
,
N. M.
Henriksen
,
B. L.
de Groot
,
Z.
Cournia
,
A.
Dickson
,
J.
Michel
,
M. K.
Gilson
,
M. R.
Shirts
,
D. L.
Mobley
, and
J. D.
Chodera
, “
The SAMPL6 sampling challenge: Assessing the reliability and efficiency of binding free energy calculations
,”
J. Comput. - Aided Mol. Des.
34
,
601
633
(
2020
).
33.
C. W.
Gardiner
,
Handbook of Stochastic Methods
(
Springer Berlin
,
2009
).
34.
C. F.
Matta
,
L.
Massa
,
A. V.
Gubskaya
, and
E.
Knoll
, “
Can one take the logarithm or the sine of a dimensioned quantity or a unit? Dimensional analysis involving transcendental functions
,”
J. Chem. Educ.
88
,
67
70
(
2011
).
35.
S.
Hottovy
,
A.
McDaniel
,
G.
Volpe
, and
J.
Wehr
, “
The Smoluchowski-Kramers limit of stochastic differential equations with arbitrary state-dependent friction
,”
Commun. Math. Phys.
336
,
1259
1283
(
2015
).
36.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
, “
Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
,”
J. Comput. Phys.
23
,
327
341
(
1977
).
37.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
1472
(
1997
).
38.
S.
Miyamoto
and
P. A.
Kollman
, “
Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models
,”
J. Comput. Chem.
13
,
952
962
(
1992
).
39.
G.
Bussi
and
M.
Parrinello
, “
Accurate sampling using Langevin dynamics
,”
Phys. Rev. E
75
,
056707
(
2007
).
40.
A.
Scemama
,
T.
Lelièvre
,
G.
Stoltz
,
E.
Cancès
, and
M.
Caffarel
, “
An efficient sampling algorithm for variational Monte Carlo
,”
J. Chem. Phys.
125
,
114105
(
2006
).
41.
D. A.
Sivak
,
J. D.
Chodera
, and
G. E.
Crooks
, “
Using nonequilibrium fluctuation theorems to understand and correct errors in equilibrium and nonequilibrium simulations of discrete Langevin dynamics
,”
Phys. Rev. X
3
,
011007
(
2013
).
42.
P. J.
Rossky
,
J. D.
Doll
, and
H. L.
Friedman
, “
Brownian dynamics as smart Monte Carlo simulation
,”
J. Chem. Phys.
69
,
4628
4633
(
1978
).
43.
V. I.
Manousiouthakis
and
M. W.
Deem
, “
Strict detailed balance is unnecessary in Monte Carlo simulation
,”
J. Chem. Phys.
110
,
2753
2756
(
1999
).
44.
J.
Fass
,
D. A.
Sivak
,
G. E.
Crooks
,
K. A.
Beauchamp
,
B.
Leimkuhler
, and
J. D.
Chodera
, “
Quantifying configuration-sampling error in Langevin simulations of complex molecular systems
,”
Entropy
20
,
318
(
2018
).
45.
M. E.
Tuckerman
,
G. J.
Martyna
, and
B. J.
Berne
, “
Molecular dynamics algorithm for condensed systems with multiple time scales
,”
J. Chem. Phys.
93
,
1287
1291
(
1990
).
46.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
47.
M. R.
Shirts
, “
Simple quantitative tests to validate sampling from thermodynamic ensembles
,”
J. Chem. Theory Comput.
9
,
909
926
(
2013
).
48.
P. T.
Merz
and
M. R.
Shirts
, “
Testing for physical validity in molecular simulations
,”
PLoS One
13
,
e0202764
(
2018
).
49.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
,
124105
(
2008
).
50.
P. V.
Klimovich
,
M. R.
Shirts
, and
D. L.
Mobley
, “
Guidelines for the analysis of free energy calculations
,”
J. Comput. - Aided Mol. Des.
29
,
397
411
(
2015
).
51.
C. H.
Bennett
, “
Efficient estimation of free energy differences from Monte Carlo data
,”
J. Comput. Phys.
22
,
245
268
(
1976
).
52.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
,
1157
1174
(
2004
).
53.
C. I.
Bayly
,
P.
Cieplak
,
W.
Cornell
, and
P. A.
Kollman
, “
A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model
,”
J. Phys. Chem.
97
,
10269
10280
(
1993
).
54.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
, “
Plumed 2: New feathers for an old bird
,”
Comput. Phys. Commun.
185
,
604
613
(
2014
).
55.
J.
Lemkul
, “
From proteins to perturbed Hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [article v1.0]
,”
Living J. Comput. Mol. Sci.
1
,
5068
(
2018
).
56.
S. K.
Kandasamy
and
R. G.
Larson
, “
Molecular dynamics simulations of model trans-membrane peptides in lipid bilayers: A systematic investigation of hydrophobic mismatch
,”
Biophys. J.
90
,
2326
2343
(
2006
).
57.
C.
Oostenbrink
,
A.
Villa
,
A. E.
Mark
, and
W. F.
Van Gunsteren
, “
A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6
,”
J. Comput. Chem.
25
,
1656
1676
(
2004
).
58.
O.
Berger
,
O.
Edholm
, and
F.
Jähnig
, “
Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature
,”
Biophys. J.
72
,
2002
2013
(
1997
).
59.
C.
Kandt
,
W. L.
Ash
, and
D.
Peter Tieleman
, “
Setting up and running molecular dynamics simulations of membrane proteins
,”
Methods
41
,
475
488
(
2007
).
60.
H. J.
Berendsen
,
J. P.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
, “
Interaction models for water in relation to protein hydration
,” in
Intermolecular Forces
(
Springer
,
1981
), pp.
331
342
.
61.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
62.
H.
Flyvbjerg
and
H. G.
Petersen
, “
Error estimates on averages of correlated data
,”
J. Chem. Phys.
91
,
461
466
(
1989
).
63.
W. L.
Jorgensen
and
C.
Jenson
, “
Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: Seeking temperatures of maximum density
,”
J. Comput. Chem.
19
,
1179
1186
(
1998
).
64.
T.
Schneider
,
E. P.
Stoll
, and
R.
Morf
, “
Brownian motion of interacting and noninteracting particles subject to a periodic potential and driven by an external field
,”
Phys. Rev. B
18
,
1417
(
1978
).
65.
G.
Bussi
and
M.
Parrinello
, “
Stochastic thermostats: Comparison of local and global schemes
,”
Comput. Phys. Commun.
179
,
26
29
(
2008
).
66.
S. C.
Harvey
,
R. K.-Z.
Tan
, and
T. E.
Cheatham
 III
, “
The flying ice cube: Velocity rescaling in molecular dynamics leads to violation of energy equipartition
,”
J. Comput. Chem.
19
,
726
740
(
1998
).
67.
E.
Rosta
,
N.-V.
Buchete
, and
G.
Hummer
, “
Thermostat artifacts in replica exchange molecular dynamics simulations
,”
J. Chem. Theory Comput.
5
,
1393
1399
(
2009
).
68.
J.
Wong-Ekkabut
,
M. S.
Miettinen
,
C.
Dias
, and
M.
Karttunen
, “
Static charges cannot drive a continuous flow of water molecules through a carbon nanotube
,”
Nat. Nanotechnol.
5
,
555
557
(
2010
).
69.
J.
Wong-ekkabut
and
M.
Karttunen
, “
The good, the bad and the user in soft matter simulations
,”
Biochim. Biophys. Acta, Biomembr.
1858
,
2529
2538
(
2016
).
70.
S. M. J.
Rogge
,
L.
Vanduyfhuys
,
A.
Ghysels
,
M.
Waroquier
,
T.
Verstraelen
,
G.
Maurin
, and
V.
Van Speybroeck
, “
A comparison of barostats for the mechanical characterization of metal–organic frameworks
,”
J. Chem. Theory Comput.
11
,
5583
5597
(
2015
).
71.
T.
Okabe
,
M.
Kawata
,
Y.
Okamoto
, and
M.
Mikami
, “
Replica-exchange Monte Carlo method for the isobaric–isothermal ensemble
,”
Chem. Phys. Lett.
335
,
435
439
(
2001
).
72.
T.
Mori
,
J.
Jung
, and
Y.
Sugita
, “
Surface-tension replica-exchange molecular dynamics method for enhanced sampling of biological membrane systems
,”
J. Chem. Theory Comput.
9
,
5629
5640
(
2013
).

Supplementary Material

You do not currently have access to this content.