Transmembrane potential difference (Vm) plays important roles in regulating various biological processes. At the macro level, Vm can be experimentally measured or calculated using the Nernst or Goldman–Hodgkin–Katz equation. However, the atomic details responsible for its generation and impact on protein and lipid dynamics still need to be further elucidated. In this work, we performed a series of all-atom molecular dynamics (MD) simulations of symmetric model membranes of various lipid compositions and cation contents to evaluate the relationship between membrane asymmetry and Vm. Specifically, we studied the impact of the asymmetric distribution of POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine), PIP2 (phosphatidylinositol 4,5-bisphosphate), as well as Na+ and K+ on Vm using atomically detailed MD simulations of symmetric model membranes. The results suggest that, for an asymmetric POPC-POPC/POPS bilayer in the presence of NaCl, the presence of the monovalent anionic lipid POPS in the inner leaflet polarizes the membrane (ΔVm < 0). Intriguingly, replacing a third of the POPS lipids by the polyvalent anionic signaling lipid PIP2 counteracts this effect, resulting in a smaller negative membrane potential. We also found that replacing Na+ ions in the inner region by K+ depolarizes the membrane (ΔVm > 0). These divergent effects arise from variations in the strength of cation–lipid interactions and are correlated with changes in lipid chain order and head-group orientation.

1.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
D.
Morgan
,
M.
Raff
,
K.
Roberts
, and
P.
Walter
,
Molecular Biology of the Cell
, 6th ed. (
Garland Press
,
New York
,
2014
).
2.
Y.
Shu
,
A.
Hasenstaub
,
A.
Duque
,
Y.
Yu
, and
D. A.
McCormick
, “
Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential
,”
Nature
441
,
761
765
(
2006
).
3.
X.
Gao
,
S.
Hong
,
Z.
Liu
,
T.
Yue
,
J.
Dobnikar
, and
X.
Zhang
, “
Membrane potential drives direct translocation of cell-penetrating peptides
,”
Nanoscale
11
,
1949
1958
(
2019
).
4.
G.
Thrivikraman
,
S. K.
Boda
, and
B.
Basu
, “
Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective
,”
Biomaterials
150
,
60
86
(
2017
).
5.
M.
Yang
and
W. J.
Brackenbury
, “
Membrane potential and cancer progression
,”
Front. Physiol.
4
,
185
(
2013
).
6.
Y.
Zhou
,
C.-O.
Wong
,
K.-j.
Cho
,
D.
van der Hoeven
,
H.
Liang
,
D. P.
Thakur
,
J.
Luo
,
M.
Babic
,
K. E.
Zinsmaier
,
M. X.
Zhu
,
H.
Hu
,
K.
Venkatachalam
, and
J. F.
Hancock
, “
Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling
,”
Science
349
,
873
876
(
2015
).
7.
G.
Van Meer
,
D. R.
Voelker
, and
G. W.
Feigenson
, “
Membrane lipids: Where they are and how they behave
,”
Nat. Rev. Mol. Cell Biol.
9
,
112
(
2008
).
8.
K. R.
Levental
,
J. H.
Lorent
,
X.
Lin
,
A. D.
Skinkle
,
M. A.
Surma
,
E. A.
Stockenbojer
,
A. A.
Gorfe
, and
I.
Levental
, “
Polyunsaturated lipids regulate membrane domain stability by tuning membrane order
,”
Biophys. J.
110
,
1800
1810
(
2016
).
9.
L.
Delemotte
,
F.
Dehez
,
W.
Treptow
, and
M.
Tarek
, “
Modeling membranes under a transmembrane potential
,”
J. Phys. Chem. B
112
,
5547
5550
(
2008
).
10.
J.
Melcr
,
D.
Bonhenry
,
Š.
Timr
, and
P.
Jungwirth
, “
Transmembrane potential modeling: Comparison between methods of constant electric field and ion imbalance
,”
J. Chem. Theory Comput.
12
,
2418
2425
(
2016
).
11.
N.
Basdevant
,
D.
Dessaux
, and
R.
Ramirez
, “
Ionic transport through a protein nanopore: A coarse-grained molecular dynamics study
,”
Sci. Rep.
9
,
15740
(
2019
).
12.
R. A.
Böckmann
,
A.
Hac
,
T.
Heimburg
, and
H.
Grubmüller
, “
Effect of sodium chloride on a lipid bilayer
,”
Biophys. J.
85
,
1647
1655
(
2003
).
13.
X.
Lin
,
V.
Nair
,
Y.
Zhou
, and
A. A.
Gorfe
, “
Membrane potential and dynamics in a ternary lipid mixture: Insights from molecular dynamics simulations
,”
Phys. Chem. Chem. Phys.
20
,
15841
15851
(
2018
).
14.
H.
Li
,
J.
Chowdhary
,
L.
Huang
,
X.
He
,
A. D.
MacKerell
, and
B.
Roux
, “
Drude polarizable force field for molecular dynamics simulations of saturated and unsaturated zwitterionic lipids
,”
J. Chem. Theory Comput.
13
,
4535
4552
(
2017
).
15.
J.
Huang
,
S.
Rauscher
,
G.
Nawrocki
,
T.
Ran
,
M.
Feig
,
B. L.
de Groot
,
H.
Grubmüller
, and
A. D.
MacKerell
, “
CHARMM36m: An improved force field for folded and intrinsically disordered proteins
,”
Nat. Methods
14
,
71
73
(
2017
).
16.
S. G.
Falkovich
,
H.
Martinez-Seara
,
A. M.
Nesterenko
,
I.
Vattulainen
, and
A. A.
Gurtovenko
, “
What can we learn about cholesterol’s transmembrane distribution based on cholesterol-induced changes in membrane dipole potential?
,”
J. Phys. Chem. Lett.
7
,
4585
4590
(
2016
).
17.
S.
Jo
,
T.
Kim
,
V. G.
Iyer
, and
W.
Im
, “
CHARMM-GUI: A web-based graphical user interface for CHARMM
,”
J. Comput. Chem.
29
,
1859
1865
(
2008
).
18.
J.
Lee
,
X.
Cheng
,
J. M.
Swails
,
M. S.
Yeom
,
P. K.
Eastman
,
J. A.
Lemkul
,
S.
Wei
,
J.
Buckner
,
J. C.
Jeong
,
Y.
Qi
,
S.
Jo
,
V. S.
Pande
,
D. A.
Case
,
C. L.
Brooks
,
A. D.
MacKerell
,
J. B.
Klauda
, and
W.
Im
, “
CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field
,”
J. Chem. Theory Comput.
12
,
405
413
(
2016
).
19.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
20.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
21.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
22.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
1472
(
1997
).
23.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
24.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1-2
,
19
25
(
2015
).
25.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
26.
A. A.
Gurtovenko
and
I.
Vattulainen
, “
Membrane potential and electrostatics of phospholipid bilayers with asymmetric transmembrane distribution of anionic lipids
,”
J. Phys. Chem. B
112
,
4629
4634
(
2008
).
27.
S.-J.
Lee
,
Y.
Song
, and
N. A.
Baker
, “
Molecular dynamics simulations of asymmetric NaCl and KCl solutions separated by phosphatidylcholine bilayers: Potential drops and structural changes induced by strong Na+-lipid interactions and finite size effects
,”
Biophys. J.
94
,
3565
3576
(
2008
).
28.
A. A.
Gurtovenko
and
I.
Vattulainen
, “
Intrinsic potential of cell membranes: Opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution
,”
J. Phys. Chem. B
113
,
7194
7198
(
2009
).
29.
E.
Bilkova
,
R.
Pleskot
,
S.
Rissanen
,
S.
Sun
,
A.
Czogalla
,
L.
Cwiklik
,
T.
Róg
,
I.
Vattulainen
,
P. S.
Cremer
,
P.
Jungwirth
, and
Ü.
Coskun
, “
Calcium directly regulates phosphatidylinositol 4, 5-bisphosphate headgroup conformation and recognition
,”
J. Am. Chem. Soc.
139
,
4019
4024
(
2017
).
30.
Y.
Wen
,
V. M.
Vogt
, and
G. W.
Feigenson
, “
Multivalent cation-bridged PI(4,5)P2 clusters form at very low concentrations
,”
Biophys. J.
114
,
2630
2639
(
2018
).
31.
A.
Catte
,
M.
Girych
,
M.
Javanainen
,
C.
Loison
,
J.
Melcr
,
M. S.
Miettinen
,
L.
Monticelli
,
J.
Määttä
,
V. S.
Oganesyan
,
O. H. S.
Ollila
,
J.
Tynkkynen
, and
S.
Vilov
, “
Molecular electrometer and binding of cations to phospholipid bilayers
,”
Phys. Chem. Chem. Phys.
18
,
32560
32569
(
2016
).
32.
K.
Han
,
R. M.
Venable
,
A.-M.
Bryant
,
C. J.
Legacy
,
R.
Shen
,
H.
Li
,
B.
Roux
,
A.
Gericke
, and
R. W.
Pastor
, “
Graph–theoretic analysis of monomethyl phosphate clustering in ionic solutions
,”
J. Phys. Chem. B
122
,
1484
1494
(
2018
).
33.
S.
Kim
,
D. S.
Patel
,
S.
Park
,
J.
Slusky
,
J. B.
Klauda
,
G.
Widmalm
, and
W.
Im
, “
Bilayer properties of lipid A from various gram-negative bacteria
,”
Biophys. J.
111
,
1750
1760
(
2016
).
34.
P.
Jurkiewicz
,
L.
Cwiklik
,
A.
Vojtíšková
,
P.
Jungwirth
, and
M.
Hof
, “
Structure, dynamics, and hydration of POPC/POPS bilayers suspended in NaCl, KCl, and CsCl solutions
,”
Biochim. Biophys. Acta, Biomembr.
1818
,
609
616
(
2012
).
35.
M.
Javanainen
,
A.
Melcrová
,
A.
Magarkar
,
P.
Jurkiewicz
,
M.
Hof
,
P.
Jungwirth
, and
H.
Martinez-Seara
, “
Two cations, two mechanisms: Interactions of sodium and calcium with zwitterionic lipid membranes
,”
Chem. Commun.
53
,
5380
5383
(
2017
).
36.
G.
Lukat
,
J.
Krüger
, and
B.
Sommer
, “
APL@Voro: A voronoi-based membrane analysis tool for GROMACS trajectories
,”
J. Chem. Inf. Model.
53
,
2908
2925
(
2013
).
37.
S.
Zhang
and
X.
Lin
, “
Lipid acyl chain cis double bond position modulates membrane domain registration/anti-registration
,”
J. Am. Chem. Soc.
141
,
15884
15890
(
2019
).
38.
J. D.
Perlmutter
and
J. N.
Sachs
, “
Interleaflet interaction and asymmetry in phase separated lipid bilayers: Molecular dynamics simulations
,”
J. Am. Chem. Soc.
133
,
6563
6577
(
2011
).
39.
J. D.
Nickels
,
J. C.
Smith
, and
X.
Cheng
, “
Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes
,”
Chem. Phys. Lipids
192
,
87
99
(
2015
).
40.
M.
Roux
and
M.
Bloom
, “
Calcium, magnesium, lithium, sodium, and potassium distributions in the headgroup region of binary membranes of phosphatidylcholine and phosphatidylserine as seen by deuterium NMR
,”
Biochemistry
29
,
7077
7089
(
1990
).
41.
M.
Roux
and
J.-M.
Neumann
, “
Deuterium NMR study of head-group deuterated phosphatidylserine in pure and binary phospholipid bilayers: Interactions with monovalent cations Na+ and Li+
,”
FEBS Lett.
199
,
33
38
(
1986
).

Supplementary Material

You do not currently have access to this content.