The Lennard-Jones potential is taken as a basis to study the structure and dynamics of the face centered cubic (fcc) solid along an isochore from low temperatures up to the solid/fluid transition. The Z method is applied to estimate the melting point. Molecular dynamics simulations are used to calculate the pair distribution function, numbers of nearest neighbors, and the translational order parameter, analyzing the weakening of the fcc-symmetry due to emerging premelting effects. A range of dynamic properties, such as the mean-squared displacement, non-Gaussian parameter, Debye–Waller factor, and vibrational density of states, is considered for the analysis of the solid state. All of these parameters clearly show that bulk mobility is activated at about 2/3 of the melting temperature, known as the Tammann temperature. This indicates that vibrational motion of atoms is not maintained exclusively in the entire stable solid state and that collective atomic motion constitutes a precursor of the melting process.

1.
F. A.
Lindemann
, “
Über die Berechnung molekularer Eigenfrequenzen
,”
Phys. Z.
11
,
609
(
1910
).
2.
M.
Born
, “
Thermodynamics of crystals and melting
,”
J. Chem. Phys.
7
,
591
(
1939
).
3.
Z. H.
Jin
,
P.
Gumbsch
,
K.
Lu
, and
E.
Ma
, “
Melting mechanisms at the limit of superheating
,”
Phys. Rev. Lett.
87
,
055703
(
2001
).
4.
H. J.
Fecht
and
W. L.
Johnson
, “
Entropy and enthalpy catastrophe as a stability limit for crystalline material
,”
Nature
334
,
50
(
1988
).
5.
W.
Kauzmann
, “
The nature of the glassy state and the behavior of liquids at low temperatures
,”
Chem. Rev.
43
,
219
(
1948
).
6.
L.
Burakovsky
,
D. L.
Preston
, and
R. R.
Silbar
, “
Melting as a dislocation-mediated phase transition
,”
Phys. Rev. B
61
,
15011
(
2000
).
7.
L.
Gómez
,
A.
Dobry
,
C.
Geuting
,
H. T.
Diep
, and
L.
Burakovsky
, “
Dislocation lines as the precursor of the melting of crystalline solids observed in Monte Carlo simulations
,”
Phys. Rev. Lett.
90
,
095701
(
2003
).
8.
F.
Delogu
, “
Cooperative dynamics and self-diffusion in superheated crystals
,”
J. Phys. Chem. B
109
,
15291
(
2005
).
9.
F.
Delogu
, “
Cooperative atomic displacements and melting at the limit of superheating
,”
J. Phys. Chem. B
110
,
3281
(
2006
).
10.
A. B.
Belonoshko
,
S.
Davis
,
N. V.
Skorodumova
,
P. H.
Lundow
,
A.
Rosengren
, and
B.
Johansson
, “
Properties of the fcc Lennard-Jones crystal model at the limit of superheating
,”
Phys. Rev. B
76
,
064121
(
2007
).
11.
X.-M.
Bai
and
M.
Li
, “
Ring-diffusion mediated homogeneous melting in the superheating regime
,”
Phys. Rev. B
77
,
134109
(
2008
).
12.
H.
Zhang
,
M.
Khalkhali
,
Q.
Liu
, and
J. F.
Douglas
, “
String-like cooperative motion in homogeneous melting
,”
J. Chem. Phys.
138
,
12A538
(
2013
).
13.
A.
Köster
,
P.
Mausbach
, and
J.
Vrabec
, “
Premelting, solid-fluid equilibria, and thermodynamic properties in the high density region based on the Lennard-Jones potential
,”
J. Chem. Phys.
147
,
144502
(
2017
).
14.
A. B.
Belonoshko
,
N. V.
Skorodumova
,
A.
Rosengren
, and
B.
Johansson
, “
Melting and critical superheating
,”
Phys. Rev. B
73
,
012201
(
2006
).
15.
F.
González-Cataldo
,
S.
Davis
, and
G.
Gutiérrez
, “
Z method calculations to determine the melting curve of silica at high pressures
,”
J. Phys.: Conf. Ser.
720
,
012032
(
2016
).
16.
K.
Yin
,
X.
Lu
,
H.
Zhou
, and
Y.
Sun
, “
Thermodynamic stability limit of the crystalline state from the Gibbs perspective
,”
Phys. Rev. B
98
,
144113
(
2018
).
17.
V.
Olguín-Arias
,
S.
Davis
, and
G.
Gutiérrez
, “
Extended correlations in the critical superheated solid
,”
J. Chem. Phys.
151
,
064507
(
2019
).
18.
S.
Deublein
,
B.
Eckl
,
J.
Stoll
,
S. V.
Lishchuk
,
G.
Guevara-Carrion
,
C. W.
Glass
,
T.
Merker
,
M.
Bernreuther
,
H.
Hasse
, and
J.
Vrabec
, “
ms2: A molecular simulation tool for thermodynamic properties
,”
Comput. Phys. Commun.
182
,
2350
2367
(
2011
).
19.
C. W.
Glass
,
S.
Reiser
,
G.
Rutkai
,
S.
Deublein
,
A.
Köster
,
G.
Guevara-Carrion
,
A.
Wafai
,
M.
Horsch
,
M.
Bernreuther
,
T.
Windmann
,
H.
Hasse
, and
J.
Vrabec
, “
ms2: A molecular simulation tool for thermodynamic properties, new version release
,”
Comput. Phys. Commun.
185
,
3302
3306
(
2014
).
20.
G.
Rutkai
,
A.
Köster
,
G.
Guevara-Carrion
,
T.
Janzen
,
M.
Schappals
,
C. W.
Glass
,
M.
Bernreuther
,
A.
Wafai
,
S.
Stephan
,
M.
Kohns
,
S.
Reiser
,
S.
Deublein
,
M.
Horsch
,
H.
Hasse
, and
J.
Vrabec
, “
ms2: A molecular simulation tool for thermodynamic properties, release 3.0
,”
Comput. Phys. Commun.
221
,
343
351
(
2017
).
21.
A. M.
Nieves
and
T.
Sinno
, “
An enthalpy landscape view of homogeneous melting in crystals
,”
J. Chem. Phys.
135
,
074504
(
2011
).
22.
X.-M.
Bai
and
M.
Li
, “
Differences between solid superheating and liquid supercooling
,”
J. Chem. Phys.
123
,
151102
(
2005
).
23.
M. C.
Abramo
,
C.
Caccamo
,
D.
Costa
,
P. V.
Giaquinta
,
G.
Malescio
,
G.
Munaò
, and
S.
Prestipino
, “
On the determination of phase boundaries via thermodynamic integration across coexistence regions
,”
J. Chem. Phys.
142
,
214502
(
2015
).
24.
J.-P.
Hansen
and
L.
Verlet
, “
Phase transitions of the Lennard-Jones system
,”
Phys. Rev.
184
,
151
(
1969
).
25.
M.
Gottschalk
, “
An EOS for the Lennard-Jones fluid: A virial expansion approach
,”
AIP Adv.
9
,
125206
(
2019
).
26.
A.
Ahmed
and
R. J.
Sadus
, “
Solid-liquid equilibria and triple points of n-6 Lennard-Jones fluids
,”
J. Chem. Phys.
131
,
174504
(
2009
);
[PubMed]
A.
Ahmed
and
R. J.
Sadus
,
Erratum
,
133
,
229902
(
2010
).
27.
A. J.
Schultz
and
D. A.
Kofke
, “
Comprehensive high-precision high-accuracy equation of state and coexistence properties for classical Lennard-Jones crystals and low-temperature fluid phases
,”
J. Chem. Phys.
149
,
204508
(
2018
).
28.
J. R.
Errington
,
P. G.
Debenedetti
, and
S.
Torquato
, “
Quantification of order in the Lennard-Jones system
,”
J. Chem. Phys.
118
,
2256
(
2003
).
29.
M. J.
Pozo
,
S.
Davis
, and
J.
Peralta
, “
Statistical distribution of thermal vacancies close to the melting point
,”
Physica B
457
,
310
(
2015
).
30.
G.
Tammann
, “
Die Temperatur des Beginns innerer Diffusion in Kristallen
,”
Z. Anorg. Allg. Chem.
157
,
321
(
1926
).
31.
G.
Tammann
,
Lehrbuch der Metallkunde, Chemie und Physik der Metalle und ihrer Legierungen
, erweiterte Auflage (
Leopold Voß
,
Leipzig
,
1932
), Vol. 4.
32.
H.
Zhang
,
X.
Wang
,
A.
Chremos
, and
J. F.
Douglas
, “
Superionic UO2: A model anharmonic crystalline material
,”
J. Chem. Phys.
150
,
174506
(
2019
).
33.
F. W.
Starr
,
S.
Sastry
,
J. F.
Douglas
, and
S. C.
Glotzer
, “
What do we learn from the local geometry of glass-forming liquids?
,”
Phys. Rev. Lett.
89
,
125501
(
2002
).
34.
L.
Larini
,
A.
Ottochian
,
C.
De Michele
, and
D.
Leporini
, “
Universal scaling between structural relaxation and vibrational dynamics in glass-forming liquids and polymers
,”
Nat. Phys.
4
,
42
(
2008
).
35.
T. S.
Grigera
,
V.
Martín-Mayor
,
G.
Parisi
, and
P.
Verrocchio
, “
Phonon interpretation of the ‘boson peak’ in supercooled liquids
,”
Nature
422
,
289
(
2003
).

Supplementary Material

You do not currently have access to this content.