The characterization of an ionic liquid’s properties based on structural information is a longstanding goal of computational chemistry, which has received much focus from ab initio and molecular dynamics calculations. This work examines kernel ridge regression models built from an experimental dataset of 2212 ionic liquid melting points consisting of diverse ion types. Structural descriptors, which have been shown to predict quantum mechanical properties of small neutral molecules within chemical accuracy, benefit from the addition of first-principles data related to the target property (molecular orbital energy, charge density profile, and interaction energy based on the geometry of a single ion pair) when predicting the melting point of ionic liquids. Out of the two chosen structural descriptors, ECFP4 circular fingerprints and the Coulomb matrix, the addition of molecular orbital energies and all quantum mechanical data to each descriptor, respectively, increases the accuracy of surrogate models for melting point prediction compared to using the structural descriptors alone. The best model, based on ECFP4 and molecular orbital energies, predicts ionic liquid melting points with an average mean absolute error of 29 K and, unlike group contribution methods, which have achieved similar results, is applicable to any type of ionic liquid.

1.
M.
Watanabe
,
M. L.
Thomas
,
S.
Zhang
,
K.
Ueno
,
T.
Yasuda
, and
K.
Dokko
, “
Application of ionic liquids to energy storage and conversion materials and devices
,”
Chem. Rev.
117
,
7190
7239
(
2017
).
2.
A.
Basile
,
M.
Hilder
,
F.
Makhlooghiazad
,
C.
Pozo-Gonzalo
,
D. R.
MacFarlane
,
P. C.
Howlett
, and
M.
Forsyth
, “
Ionic liquids and organic ionic plastic crystals: Advanced electrolytes for safer high performance sodium energy storage technologies
,”
Adv. Energy Mater.
8
,
1703491
(
2018
).
3.
J. P.
Hallett
and
T.
Welton
, “
Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2
,”
Chem. Rev.
111
,
3508
3576
(
2011
).
4.
E. I.
Izgorodina
,
Z. L.
Seeger
,
D. L. A.
Scarborough
, and
S. Y. S.
Tan
, “
Quantum chemical methods for the prediction of energetic, physical, and spectroscopic properties of ionic liquids
,”
Chem. Rev.
117
,
6696
6754
(
2017
).
5.
B.
Kirchner
,
O.
Hollóczki
,
J. N.
Canongia Lopes
, and
A. A. H.
Pádua
, “
Multiresolution calculation of ionic liquids
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
202
214
(
2015
).
6.
S.
Zahn
,
J.
Thar
, and
B.
Kirchner
, “
Structure and dynamics of the protic ionic liquid monomethylammonium nitrate ([CH3NH3][NO3]) from ab initio molecular dynamics simulations
,”
J. Chem. Phys.
132
,
124506
(
2010
).
7.
B.
Huang
,
N. O.
Symonds
, and
O. A. v.
Lilienfeld
, “
Quantum machine learning in chemistry and materials
,” in
Handbook of Materials Modeling
, Methods: Theory and Modeling, edited by
W.
Andreoni
and
S.
Yip
(
Springer International Publishing
,
Cham
,
2018
), pp.
1
27
.
8.
Z.
Wu
,
B.
Ramsundar
,
E. N.
Feinberg
,
J.
Gomes
,
C.
Geniesse
,
A. S.
Pappu
,
K.
Leswing
, and
V.
Pande
, “
MoleculeNet: A benchmark for molecular machine learning
,”
Chem. Sci.
9
,
513
530
(
2018
).
9.
F.
Musil
,
S.
De
,
J.
Yang
,
J. E.
Campbell
,
G. M.
Day
, and
M.
Ceriotti
, “
Machine learning for the structure–energy–property landscapes of molecular crystals
,”
Chem. Sci.
9
,
1289
1300
(
2018
).
10.
A.
van Roekeghem
,
J.
Carrete
,
C.
Oses
,
S.
Curtarolo
, and
N.
Mingo
, “
High-throughput computation of thermal conductivity of high-temperature solid phases: The case of oxide and fluoride perovskites
,”
Phys. Rev. X
6
,
041061
(
2016
).
11.
A.
Seko
,
T.
Maekawa
,
K.
Tsuda
, and
I.
Tanaka
, “
Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids
,”
Phys. Rev. B
89
,
054303
(
2014
).
12.
J.
Schmidt
,
M. R.
Marques
,
S.
Botti
, and
M. A.
Marques
, “
Recent advances and applications of machine learning in solid-state materials science
,”
npj Comput. Mater.
5
,
83
(
2019
).
13.
E. I.
Izgorodina
,
D.
Golze
,
R.
Maganti
,
V.
Armel
,
M.
Taige
,
T. J. S.
Schubert
, and
D. R.
MacFarlane
, “
Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids
,”
Phys. Chem. Chem. Phys.
16
,
7209
7221
(
2014
).
14.
K.
Paduszyński
and
U.
Domańska
, “
Viscosity of ionic liquids: An extensive database and a new group contribution model based on a feed-forward artificial neural network
,”
J. Chem. Inf. Model.
54
,
1311
1324
(
2014
).
15.
W.
Beckner
,
C. M.
Mao
, and
J.
Pfaendtner
, “
Statistical models are able to predict ionic liquid viscosity across a wide range of chemical functionalities and experimental conditions
,”
Mol. Syst. Des. Eng.
3
,
253
263
(
2018
).
16.
Y.
Zhao
,
Y.
Huang
,
X.
Zhang
, and
S.
Zhang
, “
A quantitative prediction of the viscosity of ionic liquids using Sσ-profile molecular descriptors
,”
Phys. Chem. Chem. Phys.
17
,
3761
3767
(
2015
).
17.
R.
Todeschini
and
V.
Consonni
,
Handbook of Molecular Descriptors
(
John Wiley & Sons
,
2008
), Vol. 11.
18.
E. T.
Swann
,
M.
Fernandez
,
M. L.
Coote
, and
A. S.
Barnard
, “
Bias-free chemically diverse test sets from machine learning
,”
ACS Comb. Sci.
19
,
544
554
(
2017
).
19.
V.
Venkatraman
,
S.
Evjen
,
K. C.
Lethesh
,
J. J.
Raj
,
H. K.
Knuutila
, and
A.
Fiksdahl
, “
Rapid, comprehensive screening of ionic liquids towards sustainable applications
,”
Sustainable Energy Fuels
3
,
2798
2808
(
2019
).
20.
E.
Wyrzykowska
,
A.
Rybińska-Fryca
,
A.
Sosnowska
, and
T.
Puzyn
, “
Virtual screening in the design of ionic liquids as environmentally safe bactericides
,”
Green Chem.
21
,
1965
1973
(
2019
).
21.
V.
Venkatraman
and
B. K.
Alsberg
, “
Predicting CO2 capture of ionic liquids using machine learning
,”
J. CO2 Util.
21
,
162
168
(
2017
).
22.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
23.
K.
Hansen
,
F.
Biegler
,
R.
Ramakrishnan
,
W.
Pronobis
,
O. A.
Von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space
,”
J. Phys. Chem. Lett.
6
,
2326
2331
(
2015
).
24.
K.
Gubaev
,
E. V.
Podryabinkin
, and
A. V.
Shapeev
, “
Machine learning of molecular properties: Locality and active learning
,”
J. Chem. Phys.
148
,
241727
(
2018
).
25.
C. R.
Collins
,
G. J.
Gordon
,
O. A.
von Lilienfeld
, and
D. J.
Yaron
, “
Constant size descriptors for accurate machine learning models of molecular properties
,”
J. Chem. Phys.
148
,
241718
(
2018
).
26.
D. H.
Wolpert
and
W. G.
Macready
, “
No free lunch theorems for optimization
,”
IEEE Trans. Evol. Comput.
1
,
67
82
(
1997
).
27.
A.
Stuke
,
M.
Todorović
,
M.
Rupp
,
C.
Kunkel
,
K.
Ghosh
,
L.
Himanen
, and
P.
Rinke
, “
Chemical diversity in molecular orbital energy predictions with kernel ridge regression
,”
J. Chem. Phys.
150
,
204121
(
2019
).
28.
G.
Montavon
,
K.
Hansen
,
S.
Fazli
,
M.
Rupp
,
F.
Biegler
,
A.
Ziehe
,
A.
Tkatchenko
,
A. V.
Lilienfeld
, and
K.-R.
Müller
, “
Learning invariant representations of molecules for atomization energy prediction
,” in
Advances in Neural Information Processing Systems 25
, edited by
F.
Pereira
,
C. J. C.
Burges
,
L.
Bottou
, and
K. Q.
Weinberger
(
Curran Associates, Inc.
,
2012
), pp.
440
448
.
29.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
444
(
2015
).
30.
A. B.
Tchagang
and
J. J.
Valdés
, “
Prediction of the atomization energy of molecules using Coulomb matrix and atomic composition in a Bayesian regularized neural networks
,” in
International Conference on Artificial Neural Networks
(
Springer
,
2019
), pp.
793
803
.
31.
V.
Venkatraman
,
S.
Evjen
,
H. K.
Knuutila
,
A.
Fiksdahl
, and
B. K.
Alsberg
, “
Predicting ionic liquid melting points using machine learning
,”
J. Mol. Liq.
264
,
318
326
(
2018
).
32.
J. O.
Valderrama
, “
Myths and realities about existing methods for calculating the melting temperatures of ionic liquids
,”
Ind. Eng. Chem. Res.
53
,
1004
1014
(
2014
).
33.
D.
Rogers
and
M.
Hahn
, “
Extended-connectivity fingerprints
,”
J. Chem. Inf. Model.
50
,
742
754
(
2010
).
34.
S.
Riniker
and
G. A.
Landrum
, “
Open-source platform to benchmark fingerprints for ligand-based virtual screening
,”
J. Cheminf.
5
,
26
(
2013
).
35.
G.
Landrum
, rdkit: Open-source cheminformatics, http://www.rdkit.org,
2020
.
36.
M.
Rupp
, “
Machine learning for quantum mechanics in a nutshell
,”
Int. J. Quantum Chem.
115
,
1058
1073
(
2015
).
37.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian ∼16, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
38.
A.
Klamt
and
G.
Schüürmann
, “
COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
,”
J. Chem. Soc., Perkin Trans. 2
1
,
799
805
(
1993
).
39.
V.
Barone
and
M.
Cossi
, “
Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model
,”
J. Phys. Chem. A
102
,
1995
2001
(
1998
).
40.
S.
Tan
,
S.
Barrera Acevedo
, and
E. I.
Izgorodina
, “
Generalized spin-ratio scaled MP2 method for accurate prediction of intermolecular interactions for neutral and ionic species
,”
J. Chem. Phys.
146
,
064108
(
2017
).
41.
A.
Klamt
, “
Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena
,”
J. Phys. Chem.
99
,
2224
2235
(
1995
).
42.
J.
Palomar
,
J. S.
Torrecilla
,
J.
Lemus
,
V. R.
Ferro
, and
F.
Rodríguez
, “
A COSMO-RS based guide to analyze/quantify the polarity of ionic liquids and their mixtures with organic cosolvents
,”
Phys. Chem. Chem. Phys.
12
,
1991
2000
(
2010
).
43.
L.
van der Maaten
and
G.
Hinton
, “
Visualizing data using t-SNE
,”
J. Mach. Learn. Res.
9
,
2579
2605
(
2008
).
44.
G.
Pilania
,
K. J.
McClellan
,
C. R.
Stanek
, and
B. P.
Uberuaga
, “
Physics-informed machine learning for inorganic scintillator discovery
,”
J. Chem. Phys.
148
,
241729
(
2018
).
45.
T.
Hastie
,
R.
Tibshirani
, and
J.
Friedman
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
, Springer Series in Statistics (
Springer
,
2009
).
46.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
,
J.
Vanderplas
,
A.
Passos
,
D.
Cournapeau
,
M.
Brucher
,
M.
Perrot
, and
E.
Duchesnay
, “
Scikit-learn: Machine learning in Python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
47.
P.
Halat
,
Z. L.
Seeger
,
S.
Barrera Acevedo
, and
E. I.
Izgorodina
, “
Trends in two-and three-body effects in multiscale clusters of ionic liquids
,”
J. Phys. Chem. B
121
,
577
588
(
2017
).
48.
R. M.
Fogarty
,
R. P.
Matthews
,
C. R.
Ashworth
,
A.
Brandt-Talbot
,
R. G.
Palgrave
,
R. A.
Bourne
,
T.
Vander Hoogerstraete
,
P. A.
Hunt
, and
K. R. J.
Lovelock
, “
Experimental validation of calculated atomic charges in ionic liquids
,”
J. Chem. Phys.
148
,
193817
(
2018
).
49.
O.
Hollóczki
,
F.
Malberg
,
T.
Welton
, and
B.
Kirchner
, “
On the origin of ionicity in ionic liquids. ion pairing versus charge transfer
,”
Phys. Chem. Chem. Phys.
16
,
16880
16890
(
2014
).
50.
K.
Wendler
,
S.
Zahn
,
F.
Dommert
,
R.
Berger
,
C.
Holm
,
B.
Kirchner
, and
L.
Delle Site
, “
Locality and fluctuations: Trends in imidazolium-based ionic liquids and beyond
,”
J. Chem. Theory Comput.
7
,
3040
3044
(
2011
).
51.
C.
Schröder
, “
Comparing reduced partial charge models with polarizable simulations of ionic liquids
,”
Phys. Chem. Chem. Phys.
14
,
3089
3102
(
2012
).
52.
E.
Mullins
,
R.
Oldland
,
Y. A.
Liu
,
S.
Wang
,
S. I.
Sandler
,
C.-C.
Chen
,
M.
Zwolak
, and
K. C.
Seavey
, “
Sigma-profile database for using COSMO-based thermodynamic methods
,”
Ind. Eng. Chem. Res.
45
,
4389
4415
(
2006
).
53.
Z. L.
Seeger
,
R.
Kobayashi
, and
E. I.
Izgorodina
, “
Cluster approach to the prediction of thermodynamic and transport properties of ionic liquids
,”
J. Chem. Phys.
148
,
193832
(
2018
).
54.
J. N.
Canongia Lopes
and
A. A. H.
Pádua
, “
Nanostructural organization in ionic liquids
,”
J. Phys. Chem. B
110
,
3330
3335
(
2006
).
55.
J.
Rigby
and
E. I.
Izgorodina
, “
Assessment of atomic partial charge schemes for polarisation and charge transfer effects in ionic liquids
,”
Phys. Chem. Chem. Phys.
15
,
1632
1646
(
2013
).
56.
Y.
Ji
,
R.
Shi
,
Y.
Wang
, and
G.
Saielli
, “
Effect of the chain length on the structure of ionic liquids: From spatial heterogeneity to ionic liquid crystals
,”
J. Phys. Chem. B
117
,
1104
1109
(
2013
).
57.
S.
Yu
,
S.
Lindeman
, and
C. D.
Tran
, “
Chiral ionic liquids: Synthesis, properties, and enantiomeric recognition
,”
J. Org. Chem.
73
,
2576
2591
(
2008
).
58.
H.
Huo
and
M.
Rupp
, “
Unified representation of molecules and crystals for machine learning
,” arXiv:1704.06439 (
2017
).
59.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
60.
M.
Gastegger
,
L.
Schwiedrzik
,
M.
Bittermann
,
F.
Berzsenyi
, and
P.
Marquetand
, “
wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials
,”
J. Chem. Phys.
148
,
241709
(
2018
).
61.
D. P.
Metcalf
,
A.
Koutsoukas
,
S. A.
Spronk
,
B. L.
Claus
,
D. A.
Loughney
,
S. R.
Johnson
,
D. L.
Cheney
, and
C. D.
Sherrill
, “
Approaches for machine learning intermolecular interaction energies and application to energy components from symmetry adapted perturbation theory
,”
J. Chem. Phys.
152
,
074103
(
2020
).
62.
J. S.
Torrecilla
,
F.
Rodríguez
,
J. L.
Bravo
,
G.
Rothenberg
,
K. R.
Seddon
, and
I.
López-Martin
, “
Optimising an artificial neural network for predicting the melting point of ionic liquids
,”
Phys. Chem. Chem. Phys.
10
,
5826
5831
(
2008
).
63.
F.
Gharagheizi
,
P.
Ilani-Kashkouli
, and
A. H.
Mohammadi
, “
Computation of normal melting temperature of ionic liquids using a group contribution method
,”
Fluid Phase Equilib.
329
,
1
7
(
2012
).
64.
J. O.
Valderrama
,
C. A.
Faúndez
, and
V. J.
Vicencio
, “
Artificial neural networks and the melting temperature of ionic liquids
,”
Ind. Eng. Chem. Res.
53
,
10504
10511
(
2014
).
65.
N.
Farahani
,
F.
Gharagheizi
,
S. A.
Mirkhani
, and
K.
Tumba
, “
Ionic liquids: Prediction of melting point by molecular-based model
,”
Thermochim. Acta
549
,
17
34
(
2012
).
66.
P. A.
Hunt
, “
The simulation of imidazolium-based ionic liquids
,”
Mol. Simul.
32
,
1
10
(
2006
).
67.
K.
Goloviznina
,
J. N.
Canongia Lopes
,
M.
Costa Gomes
, and
A. A. H.
Pádua
, “
Transferable, polarizable force field for ionic liquids
,”
J. Chem. Theory Comput.
15
,
5858
5871
(
2019
).
68.
M. L. S.
Batista
,
J. A. P.
Coutinho
, and
J. R. B.
Gomes
, “
Prediction of ionic liquids properties through molecular dynamics simulations
,”
Curr. Phys. Chem.
4
,
151
172
(
2014
).
69.
Y.
Zhang
and
E. J.
Maginn
, “
The effect of C2 substitution on melting point and liquid phase dynamics of imidazolium based-ionic liquids: Insights from molecular dynamics simulations
,”
Phys. Chem. Chem. Phys.
14
,
12157
12164
(
2012
).
70.
J. N.
Canongia Lopes
and
A. A. H.
Pádua
, “
Molecular force field for ionic liquids III: Imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions
,”
J. Phys. Chem. B
110
,
19586
19592
(
2006
).
71.
M. H.
Kowsari
,
S.
Alavi
,
M.
Ashrafizaadeh
, and
B.
Najafi
, “
Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient
,”
J. Chem. Phys.
129
,
224508
(
2008
).
72.
E. I.
Izgorodina
,
U. L.
Bernard
, and
D. R.
MacFarlane
, “
Ion-pair binding energies of ionic liquids: Can DFT compete with ab initio-based methods?
,”
J. Phys. Chem. A
113
,
7064
7072
(
2009
).
73.
S.
Zahn
,
D. R.
MacFarlane
, and
E. I.
Izgorodina
, “
Assessment of Kohn–Sham density functional theory and Møller–Plesset perturbation theory for ionic liquids
,”
Phys. Chem. Chem. Phys.
15
,
13664
13675
(
2013
).

Supplementary Material

You do not currently have access to this content.