The corrosion and oxidation of actinide metals, leading to the formation of metal-oxide surface layers with the catalytic evolution of hydrogen, impacts the management of nuclear materials. Here, the interaction of hydrogen with actinide dioxide (AnO2, An = U, Np, or Pu) (011) surfaces by Hubbard corrected density functional theory (PBEsol+U) has been studied, including spin–orbit interactions and non-collinear 3k anti-ferromagnetic behavior. The actinide dioxides crystalize in the fluorite-type structure, and although the (111) surface dominates the crystal morphology, the (011) surface energetics may lead to more significant interaction with hydrogen. The dissociative adsorption of hydrogen on the UO2 (0.44 eV), NpO2 (−0.47 eV), and PuO2 (−1.71 eV) (011) surfaces has been calculated. It is found that hydrogen dissociates on the PuO2 (011) surface; however, UO2 (011) and NpO2 (011) surfaces are relatively inert. Recombination of hydrogen ions is likely to occur on the UO2 (011) and NpO2 (011) surfaces, whereas hydroxide formation is shown to occur on the PuO2 (011) surface, which distorts the surface structure.

1.
H. E.
Sims
,
K. J.
Webb
,
J.
Brown
,
D.
Morris
, and
R. J.
Taylor
, “
Hydrogen yields from water on the surface of plutonium dioxide
,”
J. Nucl. Mater.
437
(
1
),
359
364
(
2013
).
2.
J.
Meesungnoen
and
J.-P.
Jay-Gerin
, “
Radiolysis of supercritical water at 400 °C: Density dependence of the rate constant for the reaction of hydronium ions with hydrated electrons
,”
Phys. Chem. Chem. Phys.
21
,
9141
(
2019
).
3.
J. M.
Haschke
, “
Corrosion of uranium in air and water vapor: Consequences for environmental dispersal
,”
J. Alloys Compd.
278
(
1–2
),
149
160
(
1998
).
4.
J. M.
Haschke
,
T. H.
Allen
, and
L. A.
Morales
, “
Surface and corrosion chemistry of plutonium
,”
Los Alamos Sci.
26
,
252
(
2000
).
5.
J. M.
Haschke
,
T. H.
Allen
, and
J. L.
Stakebake
, “
Reaction kinetics of plutonium with oxygen, water and humid air: Moisture enhancement of the corrosion rate
,”
J. Alloys Compd.
243
(
1–2
),
23
35
(
1996
).
6.
J. M.
Haschke
and
J. C.
Martz
, “
Catalyzed corrosion of plutonium: Hazards and applications
,”
Los Alamos Sci.
26
,
266
(
2000
).
7.
L.
Zhang
,
B.
Sun
,
Q.
Zhang
,
H.
Liu
,
K.
Liu
, and
H.
Song
, “
First-principles study of the hydrogen resistance mechanism of PuO2
,”
ACS Omega
5
(
13
),
7211
7218
(
2020
).
8.
J. T.
Pegg
,
X.
Aparicio-Anglès
,
M.
Storr
, and
N. H.
de Leeuw
, “
DFT+U study of the structures and properties of the actinide dioxides
,”
J. Nucl. Mater.
492
,
269
278
(
2017
).
9.
J. T.
Pegg
,
A. E.
Shields
,
M. T.
Storr
,
D. O.
Scanlon
, and
N. H.
de Leeuw
, “
Noncollinear relativistic DFT + U calculations of actinide dioxide surfaces
,”
J. Phys. Chem. C
123
(
1
),
356
366
(
2019
).
10.
J. T.
Pegg
,
A. E.
Shields
,
M. T.
Storr
,
A. S.
Wills
,
D. O.
Scanlon
, and
N. H.
de Leeuw
, “
Hidden magnetic order in plutonium dioxide nuclear fuel
,”
Phys. Chem. Chem. Phys.
20
(
32
),
20943
20951
(
2018
).
11.
J. T.
Pegg
,
A. E.
Shields
,
M. T.
Storr
,
A. S.
Wills
,
D. O.
Scanlon
, and
N. H.
de Leeuw
, “
Magnetic structure of UO2 and NpO2 by first-principle methods
,”
Phys. Chem. Chem. Phys.
21
(
2
),
760
771
(
2019
).
12.
A. E.
Shields
,
A Computational Analysis of Thorium Dioxide and Th(1−x) UxO2 Systems
(
UCL-University College London
,
2015
).
13.
A. E.
Shields
,
D.
Santos-Carballal
, and
N. H.
de Leeuw
, “
A density functional theory study of uranium-doped thoria and uranium adatoms on the major surfaces of thorium dioxide
,”
J. Nucl. Mater.
473
,
99
111
(
2016
).
14.
A. E.
Shields
,
A. J.
Miskowiec
,
J. L.
Niedziela
,
M. C.
Kirkegaard
,
K.
Maheshwari
,
M. W.
Ambrogio
,
R. J.
Kapsimalis
, and
B. B.
Anderson
, “
Shining a light on amorphous U2O7: A computational approach to understanding amorphous uranium materials
,”
Opt. Mater.
89
,
295
298
(
2019
).
15.
B.
Ao
and
R.
Qiu
, “
First-principles explorations of the universal picture of oxide layer structure over metallic plutonium
,”
Corros. Sci.
153
,
236
(
2019
).
16.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
(
10
),
5048
5079
(
1981
).
17.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
(
3B
),
B864
B871
(
1964
).
18.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
(
4A
),
A1133
A1138
(
1965
).
19.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
, “
Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
,”
Phys. Rev. B
57
(
3
),
1505
1509
(
1998
).
20.
A. I.
Liechtenstein
,
V. I.
Anisimov
, and
J.
Zaanen
, “
Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators
,”
Phys. Rev. B
52
(
8
),
R5467
R5470
(
1995
).
21.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
, “
Band theory and Mott insulators: Hubbard U instead of Stoner I
,”
Phys. Rev. B
44
(
3
),
943
954
(
1991
).
22.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
(
13
),
6158
6170
(
1999
).
23.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
(
18
),
8207
8215
(
2003
).
24.
I. D.
Prodan
,
G. E.
Scuseria
, and
R. L.
Martin
, “
Covalency in the actinide dioxides: Systematic study of the electronic properties using screened hybrid density functional theory
,”
Phys. Rev. B
76
(
3
),
033101
(
2007
).
25.
M. E.
Hoover
,
R.
Atta-Fynn
, and
A. K.
Ray
, “
Surface properties of uranium dioxide from first principles
,”
J. Nucl. Mater.
452
(
1
),
479
485
(
2014
).
26.
A.
Georges
,
G.
Kotliar
,
W.
Krauth
, and
M. J.
Rozenberg
, “
Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions
,”
Rev. Mod. Phys.
68
(
1
),
13
(
1996
).
27.
S. A.
Moten
,
R.
Atta-Fynn
,
A. K.
Ray
, and
M. N.
Huda
, “
Size effects on the electronic and magnetic properties of PuO2 (111) surface
,”
J. Nucl. Mater.
468
,
37
45
(
2016
).
28.
G.
van der Laan
,
K. T.
Moore
,
J. G.
Tobin
,
B. W.
Chung
,
M. A.
Wall
, and
A. J.
Schwartz
, “
Applicability of the spin-orbit sum rule for the actinide 5f states
,”
Phys. Rev. Lett.
93
(
9
),
097401
(
2004
).
29.
R.
Caciuffo
,
N.
Magnani
,
P.
Santini
,
S.
Carretta
,
G.
Amoretti
,
E.
Blackburn
,
M.
Enderle
,
P. J.
Brown
, and
G. H.
Lander
, “
Anisotropic magnetic fluctuations in 3-k antiferromagnets
,”
J. Magn. Magn. Mater.
310
(
2
),
1698
1702
(
2007
).
30.
P.
Giannozzi
and
P.
Erdös
, “
Theoretical analysis of the 3-k magnetic structure and distortion of uranium dioxide
,”
J. Magn. Magn. Mater.
67
(
1
),
75
87
(
1987
).
31.
C.
Zhang
,
Y.
Yang
, and
P.
Zhang
, “
Water dissociation on the reduced PuO2 (110) surface from first principles
,”
Sci. China: Phys., Mech. Astron.
62
(
10
),
107002
(
2019
).
32.
H. L.
Yu
,
G.
Li
,
H. B.
Li
,
R. Z.
Qiu
,
H.
Huang
, and
D. Q.
Meng
, “
Adsorption and dissociation of H2 on PuO2 (110) surface: A density functional theory study
,”
J. Alloys Compd.
654
,
567
573
(
2016
).
33.
H. L.
Yu
,
T.
Tang
,
S. T.
Zheng
,
Y.
Shi
,
R. Z.
Qiu
,
W. H.
Luo
, and
D. Q.
Meng
, “
A theoretical study of hydrogen atoms adsorption and diffusion on PuO2 (110) surface
,”
J. Alloys Compd.
666
,
287
291
(
2016
).
34.
B.
Ao
,
R.
Qiu
,
H.
Lu
, and
P.
Chen
, “
Differences in the existence states of hydrogen in UO2 and PuO2 from DFT+U calculations
,”
J. Phys. Chem. C
120
(
33
),
18445
18451
(
2016
).
35.
B.
Ao
,
R.
Qiu
,
G.
Zhang
,
Z.
Pu
,
X.
Wang
, and
P.
Shi
, “
Light impurity atoms as the probes for the electronic structures of actinide dioxides
,”
Comput. Mater. Sci.
142
,
25
31
(
2018
).
36.
T.
Bo
,
J.-H.
Lan
,
C.-Z.
Wang
,
Y.-L.
Zhao
,
C.-H.
He
,
Y.-J.
Zhang
,
Z.-F.
Chai
, and
W.-Q.
Shi
, “
First-principles study of water reaction and H2 formation on UO2 (111) and (110) single crystal surfaces
,”
J. Phys. Chem. C
118
(
38
),
21935
21944
(
2014
).
37.
T.
Bo
,
J.-H.
Lan
,
Y.-L.
Zhao
,
Y.-J.
Zhang
,
C.-H.
He
,
Z.-F.
Chai
, and
W.-Q.
Shi
, “
Surface properties of NpO2 and water reacting with stoichiometric and reduced NpO2 (111), (110), and (100) surfaces from ab initio atomistic thermodynamics
,”
Surf. Sci.
644
,
153
164
(
2016
).
38.
T.
Bo
,
J.-H.
Lan
,
Y.-L.
Zhao
,
Y.-J.
Zhang
,
C.-H.
He
,
Z.-F.
Chai
, and
W.-Q.
Shi
, “
First-Principles study of water adsorption and dissociation on the UO2 (111), (110) and (100) surfaces
,”
J. Nucl. Mater.
454
(
1
),
446
454
(
2014
).
39.
B. E.
Tegner
,
M.
Molinari
,
A.
Kerridge
,
S. C.
Parker
, and
N.
Kaltsoyannis
, “
Water adsorption on AnO2 {111}, {110}, and {100} surfaces (An = U and Pu): A density functional theory + U study
,”
J. Phys. Chem. C
121
(
3
),
1675
1682
(
2017
).
40.
J. M.
Flitcroft
,
M.
Molinari
,
N. A.
Brincat
,
M. T.
Storr
, and
S. C.
Parker
, “
Hydride ion formation in stoichiometric UO2
,”
Chem. Commun.
51
(
90
),
16209
16212
(
2015
).
41.
J. M.
Flitcroft
,
M.
Molinari
,
N. A.
Brincat
,
N. R.
Williams
,
M. T.
Storr
,
G. C.
Allen
, and
S. C.
Parker
, “
The critical role of hydrogen on the stability of oxy-hydroxyl defect clusters in uranium oxide
,”
J. Mater. Chem. A
6
(
24
),
11362
11369
(
2018
).
42.
J.
Glascott
, “
A model for the initiation of reaction sites during the uranium–hydrogen reaction assuming enhanced hydrogen transport through linear oxide discontinuities
,”
Philos. Mag.
94
(
13
),
1393
1413
(
2014
).
43.
J.
Glascott
, “
A model for the initiation of reaction sites during the uranium–hydrogen reaction assuming enhanced hydrogen transport through thin areas of surface oxide
,”
Philos. Mag.
94
(
3
),
221
241
(
2014
).
44.
M.
Fronzi
,
S.
Piccinin
,
B.
Delley
,
E.
Traversa
, and
C.
Stampfl
, “
Water adsorption on the stoichiometric and reduced CeO2 (111) surface: A first-principles investigation
,”
Phys. Chem. Chem. Phys.
11
(
40
),
9188
9199
(
2009
).
45.
J. T.
Pegg
,
A. E.
Shields
,
M. T.
Storr
,
D. O.
Scanlon
, and
N. H.
de Leeuw
, “
Interaction of hydrogen with actinide dioxide (111) surfaces
,”
J. Chem. Phys.
150
(
13
),
134701
(
2019
).
46.
V. I.
Anisimov
,
Strong Coulomb Correlations in Electronic Structure Calculations
(
CRC Press
,
2000
).
47.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]
,”
J. Chem. Phys.
124
(
21
),
219906
(
2006
).
48.
G. I.
Csonka
,
J. P.
Perdew
,
A.
Ruzsinszky
,
P. H.
Philipsen
,
S.
Lebègue
,
J.
Paier
,
O. A.
Vydrov
, and
J. G.
Ángyán
, “
Assessing the performance of recent density functionals for bulk solids
,”
Phys. Rev. B
79
(
15
),
155107
(
2009
).
49.
D.
Hait
,
A.
Rettig
, and
M.
Head-Gordon
, “
Well-behaved vs ill-behaved density functionals for single bond dissociation: Separating success from disaster functional by functional for stretched H2
,”
J. Chem. Phys.
150
(
9
),
094115
(
2019
).
50.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
, “
A fast and robust algorithm for Bader decomposition of charge density
,”
Comput. Mater. Sci.
36
(
3
),
354
360
(
2006
).
51.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
, “
A grid-based Bader analysis algorithm without lattice bias
,”
J. Phys.: Condens. Matter
21
(
8
),
084204
(
2009
).
52.
E.
Sanville
,
S. D.
Kenny
,
R.
Smith
, and
G.
Henkelman
, “
Improved grid-based algorithm for Bader charge allocation
,”
J. Comput. Chem.
28
(
5
),
899
908
(
2007
).
53.
A.
Horn
and
H.
Lanig
, “
Encyclopedia of computational chemistry
,”
J. Mol. Model.
5
(
9
),
141
142
(
1999
).
54.
E.
Bousquet
and
N.
Spaldin
, “
J-dependence in the LSDA+U treatment of noncollinear magnets
,”
Phys. Rev. B
82
(
22
),
220402
(
2010
).
55.
M. T.
Suzuki
,
N.
Magnani
, and
P. M.
Oppeneer
, “
Microscopic theory of the insulating electronic ground states of the actinide dioxides AnO2 (An = U, Np, Pu, Am, and Cm)
,”
Phys. Rev. B
88
(
19
),
195146
(
2013
).
56.
G. W.
Watson
,
E. T.
Kelsey
,
N. H.
de Leeuw
,
D. J.
Harris
, and
S. C.
Parker
, “
Atomistic simulation of dislocations, surfaces and interfaces in MgO
,”
J. Chem. Soc., Faraday Trans.
92
(
3
),
433
438
(
1996
).
57.
P. W.
Tasker
, “
The structure and properties of fluorite crystal surfaces
,”
J. Phys. Colloq.
41
(
C6
),
C6-
488
C6-491
(
1980
).
58.
P. W.
Tasker
, “
The stability of ionic crystal surfaces
,”
J. Phys. C: Solid State Phys.
12
(
22
),
4977
(
1979
).
59.
W.
Sun
and
G.
Ceder
, “
Efficient creation and convergence of surface slabs
,”
Surf. Sci.
617
,
53
59
(
2013
).
60.
S.
Steiner
,
S.
Khmelevskyi
,
M.
Marsmann
, and
G.
Kresse
, “
Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered Fe1−xCox alloys
,”
Phys. Rev. B
93
(
22
),
224425
(
2016
).
61.
A. M.
Ganose
,
A. J.
Jackson
, and
D. O.
Scanlon
, “
Sumo: Command-line tools for plotting and analysis of periodic ab initio calculations
,”
J. Open Source Software
3
(
28
),
717
(
2018
).
62.
A.
Balakrishnan
,
V.
Smith
, and
B.
Stoicheff
, “
Dissociation energy of the hydrogen molecule
,”
Phys. Rev. Lett.
68
(
14
),
2149
2152
(
1992
).
63.
G.
Herzberg
, “
The dissociation energy of the hydrogen molecule
,”
J. Mol. Spectrosc.
33
(
1
),
147
168
(
1970
).
64.
J. M.
Haschke
and
T. H.
Allen
, “
Plutonium hydride, sesquioxide and monoxide monohydride: Pyrophoricity and catalysis of plutonium corrosion
,”
J. Alloys Compd.
320
(
1
),
58
71
(
2001
).
65.
J. M.
Haschke
,
T. H.
Allen
, and
J. C.
Martz
, “
Oxidation kinetics of plutonium in air: Consequences for environmental dispersal
,”
J. Alloys Compd.
271-273
,
211
215
(
1998
).
66.
D.
Olander
, “
Nuclear fuels—Present and future
,”
J. Nucl. Mater.
389
(
1
),
1
22
(
2009
).
67.
Y.
Tanaka
,
N.
Terada
,
T.
Nakajima
,
M.
Taguchi
,
T.
Kojima
,
Y.
Takata
,
S.
Mitsuda
,
M.
Oura
,
Y.
Senba
,
H.
Ohashi
, and
S.
Shin
, “
Incommensurate orbital modulation behind ferroelectricity in CuFeO2
,”
Phys. Rev. Lett.
109
(
12
),
127205
(
2012
).
68.
T. M.
McCleskey
,
E.
Bauer
,
Q.
Jia
,
A. K.
Burrell
,
B. L.
Scott
,
S. D.
Conradson
,
A.
Mueller
,
L.
Roy
,
X.
Wen
,
G. E.
Scuseria
, and
R. L.
Martin
, “
Optical band gap of NpO2 and PuO2 from optical absorbance of epitaxial films
,”
J. Appl. Phys.
113
(
1
),
013515
(
2013
).
69.
P.
Erdös
,
G.
Solt
,
Z.
⊙ołnierek
,
A.
Blaise
, and
J. M.
Fournier
, “
Magnetic susceptibility and the phase transition of NpO2
,”
Physica B+C
102
(
1
),
164
170
(
1980
).

Supplementary Material

You do not currently have access to this content.