Analytic gradients are important for efficient calculations of stationary points on potential energy surfaces, for interpreting spectroscopic observations, and for efficient direct dynamics simulations. For excited electronic states, as are involved in UV–Vis spectroscopy and photochemistry, analytic gradients are readily available and often affordable for calculations using a state-averaged complete active space self-consistent-field (SA-CASSCF) wave function. However, in most cases, a post-SA-CASSCF step is necessary for quantitative accuracy, and such calculations are often too expensive if carried out by perturbation theory or configuration interaction. In this work, we present the analytic gradients for multiconfiguration pair-density functional theory based on SA-CASSCF wave functions, which is a more affordable alternative. A test set of molecules has been studied with this method, and the stationary geometries and energetics are compared to values in the literature as obtained by other methods. Excited-state geometries computed with state-averaged pair-density functional theory have similar accuracy to those from complete active space perturbation theory at the second-order.

1.
A. L.
Sobolewski
,
W.
Domcke
,
C.
Dedonder-Lardeux
, and
C.
Jouvet
, “
Excited-state hydrogen detachment and hydrogen transfer driven by repulsive 1πσ* states: A new paradigm for nonradiative decay in aromatic biomolecules
,”
Phys. Chem. Chem. Phys.
4
,
1093
1100
(
2002
).
2.
F.
Plasser
,
A. J.
Aquino
,
H.
Lischka
, and
D.
Nachtigallová
, “
Electronic excitation processes in single-strand and double-strand DNA: A computational approach
,” in
Photoinduced Phenomena in Nucleic Acids II
(
Springer
,
2014
), pp.
1
37
.
3.
R.
Improta
,
F.
Santoro
, and
L.
Blancafort
, “
Quantum mechanical studies on the photophysics and the photochemistry of nucleic acids and nucleobases
,”
Chem. Rev.
116
,
3540
3593
(
2016
).
4.
S. T.
Adams
and
S. C.
Miller
, “
Beyond D-luciferin: Expanding the scope of bioluminescence imaging in vivo
,”
Curr. Opin. Chem. Biol.
21
,
112
120
(
2014
).
5.
K.
Andersson
,
P. A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
, “
Solar energy conversion by dye-sensitized photovoltaic cells
,”
J. Phys. Chem.
44
,
6841
6851
(
2005
).
6.
A.
Zhugayevych
and
S.
Tretiak
, “
Theoretical description of structural and electronic properties of organic photovoltaic materials
,”
Annu. Rev. Phys. Chem.
66
,
305
330
(
2015
).
7.
W. G.
Dauben
,
L.
Salem
, and
N. J.
Turro
, “
Classification of photochemical reactions
,”
Acc. Chem. Res.
8
,
41
54
(
1975
).
8.
M.
Oelgemöller
and
N.
Hoffmann
, “
Studies in organic and physical photochemistry–An interdisciplinary approach
,”
Org. Biomol. Chem.
14
,
7392
7442
(
2016
).
9.
Š.
Budzák
,
G.
Scalmani
, and
D.
Jacquemin
, “
Accurate excited-state geometries: A CASPT2 and coupled-cluster reference database for small molecules
,”
J. Chem. Theory Comput.
13
,
6237
6252
(
2017
).
10.
S.
Matsika
and
A. I.
Krylov
, “
Introduction: Theoretical modeling of excited state processes
,”
Chem. Rev.
118
,
6925
6926
(
2018
).
11.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
,
157
173
(
1980
).
12.
B. O.
Roos
, “
The complete active space self-consistent field method and its applications in electronic structure calculations
,”
Adv. Chem. Phys.
69
,
399
445
(
1987
).
13.
D.
Jacquemin
, “
What is the key for accurate absorption and emission calculations, energy or geometry?
,”
J. Chem. Theory Comput.
14
,
1534
1543
(
2018
).
14.
G.
Li Manni
,
R. K.
Carlson
,
S.
Luo
,
D.
Ma
,
J.
Olsen
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
Multiconfiguration pair-density functional theory
,”
J. Chem. Theory Comput.
10
,
3669
3680
(
2014
).
15.
L.
Gagliardi
,
D. G.
Truhlar
,
G.
Li Manni
,
R. K.
Carlson
,
C. E.
Hoyer
, and
J. L.
Bao
, “
Multiconfiguration pair-density functional theory: A new way to treat strongly correlated systems
,”
Acc. Chem. Res.
50
,
66
73
(
2016
).
16.
J.
Finley
,
P.-Å.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
, “
The multi-state CASPT2 method
,”
Chem. Phys. Lett.
288
,
299
306
(
1998
).
17.
S.
Ghosh
,
P.
Verma
,
C. J.
Cramer
,
L.
Gagliardi
, and
D. G.
Truhlar
, “
Combining wave function methods with density functional theory for excited states
,”
Chem. Rev.
118
,
7249
7292
(
2018
).
18.
S. J.
Stoneburner
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
MC-PDFT can calculate singlet–triplet splittings of organic diradicals
,”
J. Chem. Phys.
148
,
064108
(
2018
).
19.
A. M.
Sand
,
C. E.
Hoyer
,
K.
Sharkas
,
K. M.
Kidder
,
R.
Lindh
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
Analytic gradients for complete active space pair-density functional theory
,”
J. Chem. Theory Comput.
14
,
126
138
(
2018
).
20.
I. F.
Galván
,
M.
Vacher
,
A.
Alavi
,
C.
Angeli
,
F.
Aquilante
,
J.
Autschbach
,
J. J.
Bao
,
S. I.
Bokarev
, and
N. A.
Bogdanov
, “
OpenMolcas: From source code to insight
,”
J. Chem. Theory Comput.
15
,
5925
5964
(
2019
).
21.
M. R.
Hermes
, mrh,
2020
, see https://github.com/MatthewRHermes/mrh.
22.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K. L.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci
8
,
e1340
(
2018
).
23.
J. P.
Perdew
,
A.
Savin
, and
K.
Burke
, “
Escaping the symmetry dilemma through a pair-density interpretation of spin-density functional theory
,”
Phys. Rev. A
51
,
4531
(
1995
).
24.
I. G.
Kaplan
, “
Problems in DFT with the total spin and degenerate states
,”
Int. J. Quantum Chem.
107
,
2595
2603
(
2007
).
25.
R. K.
Carlson
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
Multiconfiguration pair-density functional theory: A fully translated gradient approximation and its performance for transition metal dimers and the spectroscopy of Re2Cl82.
,”
J. Chem. Theory Comput.
11
,
4077
4085
(
2015
).
26.
H.
Hellmann
,
Einführung in die Quantenchemie
(
Franz Deuticke
,
1937
).
27.
R. P.
Feynman
, “
Forces in molecules
,”
Phys. Rev.
56
,
340
343
(
1939
).
28.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
Cambridge, UK
,
1992
).
29.
J. L.
Bao
,
A.
Sand
,
L.
Gagliardi
, and
D. G.
Truhlar
, “
Correlated-participating-orbitals pair-density functional method and application to multiplet energy splittings of main-group divalent radicals
,”
J. Chem. Theory Comput.
12
,
4274
4283
(
2016
).
30.
K.
Sharkas
,
L.
Gagliardi
, and
D. G.
Truhlar
, “
Multiconfiguration pair-density functional theory and complete active space second order perturbation theory. bond dissociation energies of FeC, NiC, FeS, NiS, FeSe, and NiSe
,”
J. Phys. Chem. A
121
,
9392
9400
(
2017
).
31.
A. M.
Sand
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
Efficient algorithm for multiconfiguration pair-density functional theory with application to the heterolytic dissociation energy of ferrocene
,”
J. Chem. Phys.
146
,
034101
(
2017
).
32.
M. S.
Oakley
,
J. J.
Bao
,
M.
Klobukowski
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
Multireference methods for calculating the dissociation enthalpy of tetrahedral P4 to two P2
,”
J. Phys. Chem. A
122
,
5742
5749
(
2018
).
33.
D.
Presti
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
Intramolecular charge transfer and local excitation in organic fluorescent photoredox catalysts explained by RASCI-PDFT
,”
J. Phys. Chem. C
122
,
12061
12070
(
2018
).
34.
L.-P.
Wang
and
C.
Song
, “
Geometry optimization made simple with translation and rotation coordinates
,”
J. Chem. Phys.
144
,
214108
(
2016
).
35.
W. C.
Stwalley
and
W. T.
Zemke
, “
Spectroscopy and structure of the lithium hydride diatomic molecules and ions
,”
J. Phys. Chem. Ref. Data
22
,
87
112
(
1993
).
36.
S. A.
Adelman
and
D. R.
Herschbach
, “
Asymptotic approximation for ionic-covalent configuration mixing in hydrogen and alkali hydrides
,”
Mol. Phys.
33
,
793
809
(
1977
).
37.
C. E.
Hoyer
,
X.
Xu
,
D.
Ma
,
L.
Gagliardi
, and
D. G.
Truhlar
, “
Diabatization based on the dipole and quadrupole: The DQ method
,”
J. Chem. Phys.
141
,
114104
(
2014
).
38.
V. A.
Job
,
V.
Sethuraman
, and
K. K.
Innes
, “
The 3500 Å1A2-X̃1A1 transition of formaldehyde-h2, d2, and hd: Vibrational and rotational analyses
,”
J. Mol. Spectrosc.
30
,
365
426
(
1969
).
39.
P.
Jensen
and
P. R.
Bunker
, “
The geometry and the inversion potential function of formaldehyde in the Ã1A2 and ã3A2 electronic states
,”
J. Mol. Spectrosc.
94
,
114
125
(
1982
).
40.
D. J.
Clouthier
and
D. A.
Ramsay
, “
The spectroscopy of formaldehyde and thioformaldehyde
,”
Annu. Rev. Phys. Chem.
34
,
31
58
(
1983
).
41.
I. A.
Godunov
,
A. V.
Abramenkov
,
V. A.
Bataev
, and
V. I.
Pupyshev
, “
Potential functions of inversion of R2CO (R = H, F, Cl) molecules in the lowest excited electronic states
,”
Russ. Chem. Bull.
48
,
640
646
(
1999
).
42.
V. T.
Jones
and
J. B.
Coon
, “
Rotational constants and geometrical structure of the 1A2 and 3A2 states of H2CO and D2CO
,”
J. Mol. Spectrosc.
31
,
137
154
(
1969
).
43.
K. N.
Walzl
,
C. F.
Koerting
, and
A.
Kuppermann
, “
Electron-impact spectroscopy of acetaldehyde
,”
J. Chem. Phys.
87
,
3796
3803
(
1987
).
44.
P.-F.
Loos
,
A.
Scemama
,
A.
Blondel
,
Y.
Garniron
,
M.
Caffarel
, and
D.
Jacquemin
, “
A mountaineering strategy to excited states: Highly accurate reference energies and benchmarks
,”
J. Chem. Theory Comput.
14
,
4360
4379
(
2018
).
45.
M. A.
Watson
and
G. K.-L.
Chan
, “
Excited states of butadiene to chemical accuracy: Reconciling theory and experiment
,”
J. Chem. Theory Comput.
8
,
4013
4018
(
2012
).
46.
Y.
Shu
and
D. G.
Truhlar
, “
Doubly excited character or static correlation of the reference state in the controversial 21Ag state of trans-butadiene?
,”
J. Am. Chem. Soc.
139
,
13770
13778
(
2017
).
47.
W.
Haugen
and
M.
Trætteberg
, “
Molecular structures of 1,3-butadiene and 1,3,5-trans-hexatriene
,”
Acta Chem. Scand.
20
,
1726
(
1966
).
48.
G.
Fogarasi
, “
Relative stabilities of three low-energy tautomers of cytosine: A coupled cluster electron correlation study
,”
J. Phys. Chem. A
106
,
1381
1390
(
2002
).
49.
A.
Nakayama
,
S.
Yamazaki
, and
T.
Taketsugu
, “
Quantum chemical investigations on the nonradiative deactivation pathways of cytosine derivatives
,”
J. Phys. Chem. A
118
,
9429
9437
(
2014
).
50.
M.
Merchán
,
R.
González-Luque
,
T.
Climent
,
L.
Serrano-Andrés
,
E.
Rodríguez
,
M.
Reguero
, and
D.
Peláez
, “
Unified model for the ultrafast decay of pyrimidine nucleobases
,”
J. Phys. Chem. B
110
,
26471
26476
(
2006
).
51.
J.
González-Vázquez
and
L.
González
, “
A time-dependent picture of the ultrafast deactivation of keto-cytosine including three-state conical intersections
,”
ChemPhysChem
11
,
3617
3624
(
2010
).
52.
A.
Nakayama
,
Y.
Harabuchi
,
S.
Yamazaki
, and
T.
Taketsugu
, “
Photophysics of cytosine tautomers: New insights into the nonradiative decay mechanisms from MS-CASPT2 potential energy calculations and excited-state molecular dynamics simulations
,”
Phys. Chem. Chem. Phys.
15
,
12322
12339
(
2013
).
53.
D. L.
Barker
and
R. E.
Marsh
, “
The crystal structure of cytosine
,”
Acta Crystallogr.
17
,
1581
1587
(
1964
).
54.
M. G.
Delcey
,
T. B.
Pedersen
,
F.
Aquilante
, and
R.
Lindh
, “
Analytical gradients of the state-average complete active space self-consistent field method with density fitting
,”
J. Chem. Phys.
143
,
044110
(
2015
).
55.
I. F.
Galván
,
M. G.
Delcey
,
T. B.
Pedersen
,
F.
Aquilante
, and
R.
Lindh
, “
Analytical state-average complete-active-space self-consistent field nonadiabatic coupling vectors: Implementation with density-fitted two-electron integrals and application to conical intersections
,”
J. Chem. Theory Comput.
12
,
3636
3653
(
2016
).

Supplementary Material

You do not currently have access to this content.