We perform molecular dynamics simulations to model density as a function of temperature for 74 alkanes with 5–10 carbon atoms and non-equilibrium molecular dynamics simulations in the NVT ensemble to model the kinematic viscosity of 10 linear alkanes as a function of molecular weight, pressure, and temperature. To model density, we perform simulations in the NPT ensemble before applying correction factors to exploit the systematic error in the SciPCFF force field and compare the results to experimental values, obtaining an average absolute deviation of 3.4 gl at 25 °C and of 7.2 gl at 100 °C. We develop a sampling algorithm that automatically selects good shear rates at which to perform viscosity simulations in the NVT ensemble and use the Carreau model with weighted least squares regression to extrapolate Newtonian viscosity. Viscosity simulations are performed at experimental densities and show an excellent agreement with experimental viscosities, with an average percent deviation of −1% and an average absolute percent deviation of 5%. Future plans to study and apply the sampling algorithm are outlined.

1.
J. J.
De la Porte
and
C. A.
Kossack
, “
A liquid phase viscosity–temperature model for long-chain n-alkanes up to C64H130 based on the Free Volume Theory
,”
Fuel
136
,
156
164
(
2014
).
2.
N.
Riesco
and
V.
Vesovic
, “
Extended hard-sphere model for predicting the viscosity of long-chain n-alkanes
,”
Fluid Phase Equilib.
425
,
385
392
(
2016
).
3.
L. T.
Novak
, “
Predictive corresponding-states viscosity model for the entire fluid region: n-Alkanes
,”
Ind. Eng. Chem. Res.
52
(
20
),
6841
6847
(
2013
).
4.
P.
Santak
and
G.
Conduit
, “
Predicting physical properties of alkanes with neural networks
,”
Fluid Phase Equilib.
501
,
112259
(
2019
).
5.
T.
Suzuki
,
R.-U.
Ebert
, and
G.
Schüürmann
, “
Application of neural networks to modeling and estimating temperature-dependent liquid viscosity of organic compounds
,”
J. Chem. Inf. Comput. Sci.
41
(
3
),
776
790
(
2001
).
6.
S. M.
Hosseini
,
M.
Moghadasi
, and
J.
Moghadasi
, “
Viscosities of some fatty acid esters and biodiesel fuels from a rough hard-sphere-chain model and artificial neural network
,”
Fuel
235
,
1083
1091
(
2019
).
7.
S. T.
Cui
,
S. A.
Gupta
,
P. T.
Cummings
, and
H. D.
Cochran
, “
Molecular dynamics simulations of the rheology of normal decane, hexadecane, and tetracosane
,”
J. Chem. Phys.
105
(
3
),
1214
1220
(
1996
).
8.
R.
Singh Payal
,
S.
Balasubramanian
,
I.
Rudra
,
K.
Tandon
,
I.
Mahlke
,
D.
Doyle
, and
R.
Cracknell
, “
Shear viscosity of linear alkanes through molecular simulations: Quantitative tests for n-decane and n-hexadecane
,”
Mol. Simul.
38
(
14-15
),
1234
1241
(
2012
).
9.
S. T.
Cui
,
P. T.
Cummings
, and
H. D.
Cochran
, “
The calculation of the viscosity from the autocorrelation function using molecular and atomic stress tensors
,”
Mol. Phys.
88
(
6
),
1657
1664
(
1996
).
10.
H.
Zhang
and
J. F.
Ely
, “
AUA model NEMD and EMD simulations of the shear viscosity of alkane and alcohol systems
,”
Fluid Phase Equilib.
217
(
1
),
111
118
(
2004
).
11.
N. D.
Kondratyuk
,
A. V.
Lankin
,
G. E.
Norman
, and
V. V.
Stegailov
, “
Relaxation and transport properties of liquid n-triacontane
,”
J. Phys.: Conf. Ser.
653
,
012107
(
2015
).
12.
L. I.
Kioupis
and
E. J.
Maginn
, “
Rheology, dynamics, and structure of hydrocarbon blends: A molecular dynamics study of n-hexane/n-hexadecane mixtures
,”
Chem. Eng. J.
74
,
129
146
(
1999
).
13.
L. I.
Kioupis
and
E. J.
Maginn
, “
Molecular simulation of poly-α-olefin synthetic lubricants: Impact of molecular architecture on performance properties
,”
J. Phys. Chem. B
103
,
10781
10790
(
1999
).
14.
L. I.
Kioupis
and
E. J.
Maginn
, “
Impact of molecular architecture on the high-pressure rheology of hydrocarbon fluids
,”
J. Phys. Chem. B
104
,
7774
7783
(
2000
).
15.
C. J.
Mundy
,
S.
Balasubramanian
,
K.
Bagchi
,
I. J.
Siepmnn
, and
M. L.
Klein
, “
Equilibrium and non-equilibrium simulation studies of fluid alkanes in bulk and at interfaces
,”
Faraday Discuss.
104
,
17
(
1996
).
16.
C. J.
Mundy
,
M. L.
Klein
, and
J. I.
Siepmann
, “
Determination of the pressure-viscosity coefficient of decane by molecular simulation
,”
J. Phys. Chem.
100
,
16779
(
1996
).
17.
G.
Pan
and
C.
McCabe
, “
Prediction of viscosity for molecular fluids at experimentally accessible shear rates using the transient time correlation function formalism
,”
J. Chem. Phys.
125
(
19
),
194527
(
2006
).
18.
E. J.
Maginn
,
R. A.
Messerly
,
D. J.
Carlson
,
D. R.
Roe
, and
R. J.
Elliott
, “
Best practices for computing transport properties 1. Self-diffusivity and viscosity from equilibrium molecular dynamics [article v1.0]
,”
Living J. Comput. Mol. Sci.
1
,
6324
(
2018
).
19.
G. P.
Morriss
and
D. J.
Evans
, “
A constraint algorithm for the computer simulation of complex molecular liquids
,”
Comput. Phys. Commun.
62
(
2
),
267
278
(
1991
).
20.
C. J.
Mundy
,
J. I.
Siepmann
, and
M. L.
Klein
, “
Decane under shear: A molecular dynamics study using reversible NVT-SLLOD and NPT-SLLOD algorithms
,”
J. Chem. Phys.
103
(
23
),
10192
10200
(
1995
).
21.
S.
Cho
,
S.
Jeong
,
J. M.
Kim
, and
C.
Baig
, “
Molecular dynamics for linear polymer melts in bulk and confined systems under shear flow
,”
Sci. Rep.
7
(
1
),
9004
(
9004
).
22.
P.
Liu
,
J.
Lu
,
H.
Yu
,
N.
Ren
,
F. E.
Lockwood
, and
Q. J.
Wang
, “
Lubricant shear thinning behavior correlated with variation of radius of gyration via molecular dynamics simulations
,”
J. Chem. Phys.
147
(
8
),
084904
(
2017
).
23.
P. J.
Daivis
and
D. J.
Evans
, “
Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane
,”
J. Chem. Phys.
100
(
1
),
541
547
(
1994
).
24.
B.
Hess
, “
Determining the shear viscosity of model liquids from molecular dynamics simulations
,”
J. Chem. Phys.
116
(
1
),
209
217
(
2002
).
25.
Y.
Yang
,
T. A.
Pakkanen
, and
R. L.
Rowley
, “
NEMD simulations of viscosity and viscosity index for lubricant-size model molecules
,”
Int. J. Thermophys.
23
(
6
),
1441
1454
(
2002
).
26.
Y.
Yang
,
T. A.
Pakkanen
, and
R. L.
Rowley
, “
Nonequilibrium molecular dynamics simulations of shear viscosity: Isoamyl alcohol, n-butyl acetate, and their mixtures
,”
Int. J. Thermophys.
21
(
3
),
703
717
(
2000
).
27.
P.
Liu
,
H.
Yu
,
N.
Ren
,
F. E.
Lockwood
, and
Q.
Jane Wang
, “
Pressure–viscosity coefficient of hydrocarbon base oil through molecular dynamics simulations
,”
Tribol. Lett.
60
(
3
),
34
(
2015
).
28.
W.
Allen
and
R. L.
Rowley
, “
Predicting the viscosity of alkanes using nonequilibrium molecular dynamics: Evaluation of intermolecular potential models
,”
J. Chem. Phys.
106
(
24
),
10273
10281
(
1997
).
29.
R.
Khare
,
J.
de Pablo
, and
A.
Yethiraj
, “
Rheological, thermodynamic, and structural studies of linear and branched alkanes under shear
,”
J. Chem. Phys.
107
(
17
),
6956
6964
(
1997
).
30.
J. D.
Moore
,
S. T.
Cui
,
H. D.
Cochran
, and
P. T.
Cummings
, “
A molecular dynamics study of a short-chain polyethylene melt.: I. Steady-state shear
,”
J. Non-Newtonian Fluid Mech.
93
(
1
),
83
99
(
2000
).
31.
American Petroleum Institute
, “
Research project 44 and Texas engineering experiment station. Thermodynamics research center
,” in
TRC Thermodynamic Tables: Hydrocarbons
(
Thermodynamics Research Center; Texas Engineering Experiment Station; Texas A & M University System
,
1986
).
32.
D. R.
Caudwell
,
J. P. M.
Trusler
,
V.
Vesovic
, and
W. A.
Wakeham
, “
The viscosity and density of n-dodecane and n-octadecane at pressures up to 200 MPa and temperatures up to 473 K
,”
Int. J. Thermophys.
25
(
5
),
1339
1352
(
2004
).
33.
D. R.
Caudwell
,
J. P. M.
Trusler
,
V.
Vesovic
, and
W. A.
Wakeham
, “
Viscosity and density of five hydrocarbon liquids at pressures up to 200 MPa and temperatures up to 473 K
,”
J. Chem. Eng. Data
54
(
2
),
359
366
(
2009
).
34.
P.
Daugé
,
A.
Baylaucq
,
X.
Canet
, and
C.
Boned
, “
High pressure viscosity and density measurements of the binary mixture tridecane + 2,2,4,4,6,8,8-heptamethylnonane
,”
High Pressure Res.
18
(
1-6
),
291
296
(200).
35.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
36.
H.
Sun
,
S. J.
Mumby
,
J. R.
Maple
, and
A. T.
Hagler
, “
An ab initio CFF93 all-atom force field for polycarbonates
,”
J. Am. Chem. Soc.
116
(
7
),
2978
2987
(
1994
).
37.
H.
Sun
, “
COMPASS: An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds
,”
J. Phys. Chem. B
102
,
7338
7364
(
1998
).
38.
H.
Flyvbjerg
and
H. G.
Petersen
, “
Error estimates on averages of correlated data
,”
J. Chem. Phys.
91
(
1
),
461
466
(
1989
).
39.
Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, Lecture Notes
, NIC Series Volume 10, edited by
J.
Grotendorst
,
D.
Marx
, and
A.
Muramatsu
(
John von Neumann Institute for Computing, Julich, 2002
), ISBN 3-00-009057-6, pp.
423
445
.
40.
D. J.
Evans
and
G. P.
Morriss
, “
Nonlinear-response theory for steady planar Couette flow
,”
Phys. Rev. A
30
,
1528
1530
(
1984
).
41.
A. W.
Lees
and
S. F.
Edwards
, “
The computer study of transport processes under extreme conditions
,”
J. Phys. C: Solid State Phys.
5
,
1972
(
1921
).
42.
K.
Levenberg
, “
A method for the solution of certain non-linear problems in least squares
,”
Q. Appl. Math.
2
,
164
168
(
1944
).
43.
D. W.
Marquardt
, “
An algorithm for least-squares estimation of nonlinear parameters
,”
J. Soc. Ind. Appl. Math.
11
(
2
),
431
441
(
1963
).
44.
W. A.
Felsing
and
G. M.
Watson
, “
The compressibility of liquid n-octane
,”
J. Am. Chem. Soc.
64
(
8
),
1822
1823
(
1942
).
45.
J.
Friedman
,
T.
Hastie
, and
R.
Tibshirani
,
The Elements of Statistical Learning
(
Springer, New York
,
2009
).
46.
S. T.
Cui
,
P. T.
Cummings
,
H. D.
Cochran
,
J. D.
Moore
, and
S. A.
Gupta
, “
Nonequilibrium molecular dynamics simulation of the rheology of linear and branched alkanes
,”
Int. J. Thermophys.
19
(
2
),
449
459
(
1998
).
You do not currently have access to this content.