Converting solar energy to chemical energy in the form of hydrogen via water splitting is one of the promising strategies to solve the global energy crisis. Hematite, a traditional semiconducting oxide photoelectrode, can only absorb UV and visible parts of the solar spectrum, losing 40% infrared energy. In this paper, we report a novel plasmonic enhanced water splitting photoanode based on hematite-lanthanide upconversion nanocomposites to harvest lost photons below the bandgap of hematite. NaYF4:Er, Yb upconversion nanoparticles can upconvert photons from 980 nm to 510 nm–570 nm within the bandgap of hematite. More importantly, a gold nanodisk array with a plasmonic peak centered ∼1000 nm can further boost the photocurrent by 93-fold. It is demonstrated that the excitation process of lanthanide upconversion nanoparticles can be significantly enhanced by plasmonic nanostructures and can thus improve the water oxidation activity via plasmonic enhanced upconversion and hot electron injection, respectively. This new promising strategy will pave the way for plasmonic enhanced lost photon harvesting for applications in solar energy conversion.

1.
G. D.
Scholes
,
G. R.
Fleming
,
A.
Olaya-Castro
, and
R.
Van Grondelle
, “
Lessons from nature about solar light harvesting
,”
Nat. Chem.
3
,
763
774
(
2011
).
2.
S.
Chu
,
W.
Li
,
Y.
Yan
,
T.
Hamann
,
I.
Shih
,
D.
Wang
, and
Z.
Mi
, “
Roadmap on solar water splitting: Current status and future prospects
,”
Nano Futures
1
,
022001
(
2017
).
3.
Z.
Chen
,
H. N.
Dinh
, and
E.
Miller
,
Springer Briefs in Energy
(
Springer
,
2013
), p.
130
.
4.
S. C.
Warren
and
E.
Thimsen
, “
Plasmonic solar water splitting
,”
Energy Environ. Sci.
5
,
5133
5146
(
2012
).
5.
P.
Saurabh Bassi
,
L.
Helena Wong
, and
J.
Barber
, “
Iron based photoanodes for solar fuel production
,”
Phys. Chem. Chem. Phys.
16
,
11834
11842
(
2014
).
6.
J.
Juodkazyte
,
G.
Seniutinas
,
B.
Šebeka
,
I.
Savickaja
,
T.
Malinauskas
,
K.
Badokas
,
K.
Juodkazis
, and
S.
Juodkazis
, “
Solar water splitting: Efficiency discussion
,”
Int. J. Hydrogen Energy
41
,
11941
11948
(
2016
); arXiv:1604.01094.
7.
S.
Hao
,
G.
Chen
, and
C.
Yang
, “
Sensing using rare-earth-doped upconversion nano-particles
,”
Theranostics
3
,
331
345
(
2013
).
8.
W.
Wang
,
Y.
Li
,
Z.
Kang
,
F.
Wang
, and
J. C.
Yu
, “
A NIR-driven photocatalyst based on α-NaYF4: YB, Tm@TiO2 core-shell structure supported on reduced graphene oxide
,”
Appl. Catal. B: Environ.
182
,
184
192
(
2016
).
9.
Y.
Tang
,
W.
Di
,
X.
Zhai
,
R.
Yang
, and
W.
Qin
, “
NIR-responsive photocatalytic activity and mechanism of NaYF4:Yb, Tm@TiO2 core-shell nanoparticles
,”
ACS Catal.
3
,
405
412
(
2013
).
10.
M.
Zhang
,
Y.
Lin
,
T. J.
Mullen
,
W.-f.
Lin
,
L.-D.
Sun
,
C.-H.
Yan
,
T. E.
Patten
,
D.
Wang
, and
G. y.
Liu
, “
Improving hematites solar water splitting efficiency by incorporating rare-earth upconversion nanomaterials
,”
J. Phys. Chem. Lett.
3
,
3188
3192
(
2012
).
11.
M.
Sathish
,
B.
Viswanathan
, and
R.
Viswanath
, “
Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting
,”
Int. J. Hydrogen Energy
31
,
891
898
(
2006
).
12.
X.
Guo
,
W.
Song
,
C.
Chen
,
W.
Di
, and
W.
Qin
, “
Near-infrared photo- catalysis of β-NaYF4:Yb3+, Tm3+@ZnO composites
,”
Phys. Chem. Chem. Phys.
15
,
14681
14688
(
2013
).
13.
J.-C.
Boyer
and
F. C. J. M.
van Veggel
, “
Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles
,”
Nanoscale
2
,
1417
1419
(
2010
).
14.
S.
Liu
,
G.
Chen
,
T. Y.
Ohulchanskyy
,
M. T.
Swihart
, and
P. N.
Prasad
, “
Facile synthesis and potential bioimaging applications of hybrid upcon- verting and plasmonic NaGdF4: Yb3+, Er3+/silica/gold nanoparticles
,”
Theranostics
3
,
275
281
(
2013
).
15.
W. L.
Barnes
,
A.
Dereux
, and
T. W.
Ebbesen
, “
Surface plasmon subwave-length optics
,”
Nature
424
,
824
830
(
2003
); arXiv:1312.6806.
16.
K. A.
Willets
and
R. P.
Van Duyne
, “
Localized surface plasmon resonance spectroscopy and sensing
,”
Annu. Rev. Phys. Chem.
58
,
267
297
(
2007
).
17.
K. L.
Kelly
,
E.
Coronado
,
L. L.
Zhao
, and
G. C.
Schatz
, “
The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment
,”
J. Phys. Chem. B
107
,
668
677
(
2003
).
18.
I.
Zorić
,
M.
Zäch
,
B.
Kasemo
, and
C.
Langhammer
, “
Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms
,”
ACS Nano
5
,
2535
2546
(
2011
).
19.
A. D.
Ostrowski
,
E. M.
Chan
,
D. J.
Gargas
,
E. M.
Katz
,
G.
Han
,
P. J.
Schuck
,
D. J.
Milliron
, and
B. E.
Cohen
, “
Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals
,”
ACS Nano
6
,
2686
2692
(
2012
).
20.
M. K.
Gnanasammandhan
,
N. M.
Idris
,
A.
Bansal
,
K.
Huang
, and
Y.
Zhang
, “
Near-IR photoactivation using mesoporous silica-coated NaYF4:Yb, Er/Tm upconversion nanoparticles
,”
Nat. Protoc.
11
,
688
713
(
2016
).
21.
J. C.
Hulteen
and
R. P.
Van Duyne
, “
Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces
,”
J. Vac. Sci. Technol. A
13
,
1553
1558
(
1995
).
22.
J. Y.
Kim
,
G.
Magesh
,
D. H.
Youn
,
J.-W.
Jang
,
J.
Kubota
,
K.
Domen
, and
J. S.
Lee
, “
Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting
,”
Sci. Rep.
3
,
2681
(
2013
).
23.
G. P.
Acuna
,
M.
Bucher
,
I. H.
Stein
,
C.
Steinhauer
,
A.
Kuzyk
,
P.
Holzmeister
,
R.
Schreiber
,
A.
Moroz
,
F. D.
Stefani
,
T.
Liedl
,
F. C.
Simmel
, and
P.
Tinnefeld
, “
Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami
,”
ACS Nano
6
,
3189
3195
(
2012
).
24.
W.
Ge
,
X. R.
Zhang
,
M.
Liu
,
Z. W.
Lei
,
R. J.
Knize
, and
Y.
Lu
, “
Distance dependence of gold-enhanced upconversion luminescence in Au/SiO2/Y2O3: Yb3+, Er3+ nanoparticles
,”
Theranostics
3
,
282
288
(
2013
).
25.
A. F.
Oskooi
,
D.
Roundy
,
M.
Ibanescu
,
P.
Bermel
,
J. D.
Joannopoulos
, and
S. G.
Johnson
, “
Meep: A flexible free-software package for electromagnetic simulations by the FDTD method
,”
Comput. Phys. Commun.
181
,
687
702
(
2010
).
26.
P.
Zhang
,
T.
Wang
, and
J.
Gong
, “
Mechanistic understanding of the plasmonic enhancement for solar water splitting
,”
Adv. Mater.
27
,
5328
5342
(
2015
).
27.
B.
Hou
,
L.
Shen
,
H.
Shi
,
R.
Kapadia
, and
S. B.
Cronin
, “
Hot electron-driven photocatalytic water splitting
,”
Phys. Chem. Chem. Phys.
19
,
2877
2881
(
2017
).
You do not currently have access to this content.