The effects of lithium bis(fluorosulfonyl)imide, Li[N(SO2F)2] (LiFSI), as an additive on the low-temperature performance of graphiteLiCoO2 pouch cells are investigated. The cell, which includes 0.2M LiFSI salt additive in the 1M lithium hexafluorophosphate (LiPF6)-based conventional electrolyte, outperforms the one without additive under −20 °C and high charge cutoff voltage of 4.3 V, delivering higher discharge capacity and promoted rate performance and cycling stability with the reduced change in interfacial resistance. Surface analysis results on the cycled LiCoO2 cathodes and cycled graphite anodes extracted from the cells provide evidence that a LiFSI-induced improvement of high-voltage cycling stability at low temperature originates from the formation of a less resistive solid electrolyte interphase layer, which contains plenty of LiFSI-derived organic compounds mixed with inorganics that passivate and protect the surface of the cathode and anode from further electrolyte decomposition and promotes Li+ ion-transport kinetics despite the low temperature, inhibiting Li metal-plating at the anode. The results demonstrate the beneficial effects of the LiFSI additive on the performance of a lithium-ion battery for use in battery-powered electric vehicles and energy storage systems in cold climates and regions.

1.
Y.
Ji
,
Y.
Zhang
, and
C.-Y.
Wang
,
J. Electrochem. Soc.
160
,
A636
(
2013
).
2.
S. S.
Zhang
,
K.
Xu
, and
T. R.
Jow
,
Electrochem. Commun.
4
,
928
(
2002
).
3.
L.
Liao
,
X.
Cheng
,
Y.
Ma
,
P.
Zuo
,
W.
Fang
,
G.
Yin
, and
Y.
Gao
,
Electrochim. Acta
87
,
466
(
2013
).
4.
S. S.
Zhang
,
K.
Xu
, and
T. R.
Jow
,
J. Power Sources
115
,
137
(
2003
).
5.
G. G.
Eshetu
,
S.
Grugeon
,
G.
Gachot
,
D.
Mathiron
,
M.
Armand
, and
S.
Laruelle
,
Electrochim. Acta
102
,
133
(
2013
).
6.
M. C.
Smart
,
J. Electrochem. Soc.
146
,
486
(
1999
).
7.
M. C.
Smart
,
B. V.
Ratnakumar
,
V. S.
Ryan-Mowrey
,
S.
Surampudi
,
G. K. S.
Prakash
,
J.
Hu
, and
I.
Cheung
,
J. Power Sources
119-121
,
359
(
2003
).
8.
M. C.
Smart
,
B. V.
Ratnakumar
, and
S.
Surampudi
,
J. Electrochem. Soc.
149
,
A361
(
2002
).
9.
M. C.
Smart
,
B. L.
Lucht
,
S.
Dalavi
,
F. C.
Krause
, and
B. V.
Ratnakumar
,
J. Electrochem. Soc.
159
,
A739
(
2012
).
10.
S. S.
Zhang
,
J. Power Sources
163
,
713
(
2007
).
11.
S.
Li
,
X.
Li
,
J.
Liu
,
Z.
Shang
, and
X.
Cui
,
Ionics
21
,
901
(
2015
).
12.
D. Y.
Wang
,
A.
Xiao
,
L.
Wells
, and
J. R.
Dahn
,
J. Electrochem. Soc.
162
,
A169
(
2014
).
13.
H. B.
Han
,
S. S.
Zhou
,
D. J.
Zhang
,
S. W.
Feng
,
L. F.
Li
,
K.
Liu
,
W. F.
Feng
,
J.
Nie
,
H.
Li
,
X. J.
Huang
,
M.
Armand
, and
Z.
Bin Zhou
,
J. Power Sources
196
,
3623
(
2011
).
14.
A.
Guerfi
,
S.
Duchesne
,
Y.
Kobayashi
,
A.
Vijh
, and
K.
Zaghib
,
J. Power Sources
175
,
866
(
2008
).
15.
G. G.
Eshetu
,
T.
Diemant
,
S.
Grugeon
,
R. J.
Behm
,
S.
Laruelle
,
M.
Armand
, and
S.
Passerini
,
ACS Appl. Mater. Interfaces
8
,
16087
(
2016
).
16.
M.
Nie
and
B. L.
Lucht
,
J. Electrochem. Soc.
161
,
A1001
(
2014
).
17.
B.
Philippe
,
R.
Dedryvère
,
M.
Gorgoi
,
H.
Rensmo
,
D.
Gonbeau
, and
K.
Edström
,
J. Am. Chem. Soc.
135
,
9829
(
2013
).
19.
A.
Nyman
,
M.
Behm
, and
G.
Lindbergh
,
Electrochim. Acta
53
,
6356
(
2008
).
20.
M. S.
Ding
,
K.
Xu
,
S. S.
Zhang
,
K.
Amine
,
G. L.
Henriksen
, and
T. R.
Jow
,
J. Electrochem. Soc.
148
,
A1196
(
2001
).
21.
M. V.
Reddy
,
T. W.
Jie
,
C. J.
Jafta
,
K. I.
Ozoemena
,
M. K.
Mathe
,
A. S.
Nair
,
S. S.
Peng
,
M. S.
Idris
,
G.
Balakrishna
,
F. I.
Ezema
, and
B. V. R.
Chowdari
,
Electrochim. Acta
128
,
192
(
2014
).
22.
K. S.
Tan
,
M. V.
Reddy
,
G. V. S.
Rao
, and
B. V. R.
Chowdari
,
J. Power Sources
147
,
241
(
2005
).
23.
J. N.
Reimers
and
J. R.
Dahn
,
J. Electrochem. Soc.
139
,
2091
(
1992
).
24.
Y.-C.
Lu
,
A. N.
Mansour
,
N.
Yabuuchi
, and
Y.
Shao-Horn
,
Chem. Mater.
21
,
4408
(
2009
).
25.
B.
Wu
,
J.
Wang
,
J.
Li
,
W.
Lin
,
H.
Hu
,
F.
Wang
,
S.
Zhao
,
C.
Gan
, and
J.
Zhao
,
Electrochim. Acta
209
,
315
(
2016
).
26.
X.
Zuo
,
C.
Fan
,
X.
Xiao
,
J.
Liu
, and
J.
Nan
,
J. Power Sources
219
,
94
(
2012
).
27.
M.
Zhao
,
X.
Zuo
,
X.
Ma
,
X.
Xiao
,
L.
Yu
, and
J.
Nan
,
J. Power Sources
323
,
29
(
2016
).
28.
T.
Ohzuku
and
A.
Ueda
,
J. Electrochem. Soc.
141
,
2972
(
1994
).
29.
L.
Liu
,
L.
Chen
,
X.
Huang
,
X. Q.
Yang
,
W.-S.
Yoon
,
H. S.
Lee
, and
J.
McBreen
,
J. Electrochem. Soc.
151
,
A1344
(
2004
).
30.
H. Q.
Pham
,
K.-M.
Nam
,
E.-H.
Hwang
,
Y.-G.
Kwon
,
H. M.
Jung
, and
S.-W.
Song
,
J. Electrochem. Soc.
161
,
A2002
(
2014
).
31.
J.-W.
Song
,
C. C.
Nguyen
,
H.
Choi
,
K.-H.
Lee
,
K.-H.
Han
,
Y.-J.
Kim
,
S.
Choy
, and
S.-W.
Song
,
J. Electrochem. Soc.
158
,
A458
(
2011
).
32.
H. Q.
Pham
,
E.-H.
Hwang
,
Y.-G.
Kwon
, and
S.-W.
Song
,
J. Power Sources
323
,
220
(
2016
).
33.
Y.-M.
Lee
,
K.-M.
Nam
,
E.-H.
Hwang
,
Y.-G.
Kwon
,
D.-H.
Kang
,
S.-S.
Kim
, and
S.-W.
Song
,
J. Phys. Chem. C
118
,
10631
(
2014
).
34.
G.
Socrates
,
Infrared Characteristic Group Frequencies, Tables and Charts
, 2nd ed. (
John Wiley & Sons
,
New York
,
1994
).
35.
H. Q.
Pham
,
B. J.
Kim
,
H.
Jo
,
S.
Kang
,
S.-J.
You
, and
S.-W.
Song
,
J. Electrochem. Soc.
164
,
A3045
(
2017
).
36.
R. A.
Quinlan
,
Y.-C.
Lu
,
Y.
Shao-Horn
, and
A. N.
Mansour
,
J. Electrochem. Soc.
160
,
A669
(
2013
).
37.
X.
Zheng
,
T.
Huang
,
Y.
Pan
,
W.
Wang
,
G.
Fang
,
K.
Ding
, and
M.
Wu
,
J. Power Sources
319
,
116
(
2016
).
38.
X.
Zheng
,
T.
Huang
,
Y.
Pan
,
W.
Wang
,
G.
Fang
, and
M.
Wu
,
J. Power Sources
293
,
196
(
2015
).
39.
See http://Srdata.Nist.Gov/Xps/VC for NIST X-Ray Photoelectron Spectroscopy Database, 2003 Copyright (last accessed 2019).
40.
C. D.
Wagner
,
W. M.
Riggs
,
L. E.
Davis
, and
J. F.
Moulder
,
Handbook of X-Ray Photoelectron Spectroscopy
, edited by
G. E.
Muilenberg
(
Perkin-Elmer Corp
,
Minnesota
,
1979
).
41.
S.-W.
Song
,
G. V.
Zhuang
, and
P. N.
Ross
,
J. Electrochem. Soc.
151
,
A1162
(
2004
).
42.
L.
Dahéron
,
H.
Martinez
,
R.
Dedryvére
,
I.
Baraille
,
M.
Ménétrier
,
C.
Denage
,
C.
Delmas
, and
D.
Gonbeau
,
J. Phys. Chem. C
113
,
5843
(
2009
).
43.
L.
Baggetto
,
N. J.
Dudney
, and
G. M.
Veith
,
Electrochim. Acta
90
,
135
(
2013
).
You do not currently have access to this content.