We report the temperature influence of the OHad and Oad electroadsorption on RuO2(110) films grown on TiO2(110) crystals in alkaline media. From the temperature effect, we evaluate the enthalpy and entropy of the OHad and Oad electroadsorption, including the adsorbate–adsorbate interactions that we analyze using the interaction parameters of the Frumkin-isotherm model. We found that the adsorbates repel each other enthalpically but attract each other entropically. Our result suggests that an entropy analysis is necessary to capture the electroadsorption behavior on RuO2 since the enthalpy–entropy competition strongly influences the electroadsorption behavior. Our observation of an entropic force is consistent with the view that water may be a mediator for adsorbate–adsorbate interactions.

1.
Z. W.
Seh
 et al., “
Combining theory and experiment in electrocatalysis: Insights into materials design
,”
Science
355
,
1
(
2017
).
2.
V. R.
Stamenkovic
,
D.
Strmcnik
,
P. P.
Lopes
, and
N. M.
Markovic
, “
Energy and fuels from electrochemical interfaces
,”
Nat. Mater.
16
,
57
69
(
2017
).
3.
R. R.
Rao
 et al., “
Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution
,”
Energy Environ. Sci.
10
,
2626
2637
(
2017
).
4.
F. C.
Anson
, “
Innovations in the study of adsorbed reactants by chronocoulometry
,”
Anal. Chem.
38
,
54
(
1966
).
5.
H.
Wroblowa
,
Z.
Kovac
, and
J. O.
Bockris
, “
Isotherms and related data in the electro-adsorption of certain ions on mercury
,”
Trans. Faraday Soc.
61
,
1523
(
1965
).
6.
Y. Y.
Shao
 et al., “
Graphene based electrochemical sensors and biosensors: A review
,”
Electroanalysis
22
,
1027
1036
(
2010
).
7.
Y.
Bouhadana
,
E.
Avraham
,
A.
Soffer
, and
D.
Aurbach
, “
Several basic and practical aspects related to electrochemical deionization of water
,”
Aiche J.
56
,
779
789
(
2010
).
8.
G. D.
Liu
and
Y. H.
Lin
, “
Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents
,”
Anal. Chem.
77
,
5894
5901
(
2005
).
9.
C.
Gurtner
,
A. W.
Wun
, and
M.
Sailor
, “
Surface modification of porous silicon by electrochemical reduction of organo halides
,”
Angew. Chem., Int. Ed.
38
,
1966
1968
(
1999
).
10.
T. P.
Moffat
,
D.
Wheeler
,
W. H.
Huber
, and
D.
Josell
, “
Superconformal electrodeposition of copper
,”
Electrochem. Solid State Lett.
4
,
C26
C29
(
2001
).
11.
S.
Maldonado
 et al., “
Surface modification of indium tin oxide via electrochemical reduction of aryldiazonium cations
,”
Langmuir
22
,
2884
2891
(
2006
).
12.
V. R.
Stamenkovic
 et al., “
Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability
,”
Science
315
,
493
497
(
2007
).
13.
I. E. L.
Stephens
 et al., “
Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying
,”
J. Am. Chem. Soc.
133
,
5485
5491
(
2011
).
14.
I. C.
Man
 et al., “
Universality in oxygen evolution electrocatalysis on oxide surfaces
,”
ChemCatChem
3
,
1159
1165
(
2011
).
15.
F.
Calle-Vallejo
and
M. T. M.
Koper
, “
First-principles computational electrochemistry: Achievements and challenges
,”
Electrochim. Acta
84
,
3
11
(
2012
).
16.
D. Y.
Kuo
 et al., “
Influence of surface adsorption on the oxygen evolution reaction on IrO2(110)
,”
J. Am. Chem. Soc.
139
,
3473
3479
(
2017
).
17.
D. Y.
Kuo
 et al., “
Measurements of oxygen electroadsorption energies and oxygen evolution reaction on RuO2(110): A discussion of the Sabatier principle and its role in electrocatalysis
,”
J. Am. Chem. Soc.
140
,
17597
17605
(
2018
).
18.
N.
Keilbart
,
Y.
Okada
, and
I.
Dabo
, “
Probing the pseudocapacitance and energy-storage performance of RuO2 facets from first principles
,”
Phys. Rev. Mater.
3
,
085405
(
2019
).
19.
K.
Mathew
,
R.
Sundararaman
,
K.
Letchworth-Weaver
,
T. A.
Arias
, and
R. G.
Hennig
, “
Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
,”
J. Chem. Phys.
140
,
084106
(
2014
).
20.
K. S.
Exner
,
I.
Sohrabnejad-Eskan
,
J.
Anton
,
T.
Jacob
, and
H.
Over
, “
Full free energy diagram of an electrocatalytic reaction over a single-crystalline model electrode
,”
ChemElectroChem
4
,
2902
2908
(
2017
).
21.
R.
Gomez
,
J. M.
Orts
,
B.
Alvarez-Ruiz
, and
J. M.
Feliu
, “
Effect of temperature on hydrogen adsorption on Pt(111), Pt(110), and Pt(100) electrodes in 0.1M HClO4
,”
J. Phys. Chem. B
108
,
228
238
(
2004
).
22.
A.
Zolfaghari
and
G.
Jerkiewicz
, “
New findings on hydrogen and anion adsorption at a Pt(111) electrode in aqueous H2SO4 solution generated by temperature variation
,”
J. Electroanal. Chem.
422
,
1
6
(
1997
).
23.
A.
Zolfaghari
and
G.
Jerkiewicz
, “
The temperature dependence of hydrogen and anion adsorption at a Pt(100) electrode in aqueous H2SO4 solution
,”
J. Electroanal. Chem.
420
,
11
15
(
1997
).
24.
A.
Zolfaghari
and
G.
Jerkiewicz
, “
Temperature-dependent research on Pt(111) and Pt(100) electrodes in aqueous H2SO4
,”
J. Electroanal. Chem.
467
,
177
185
(
1999
).
25.
Y.
Lee
,
J.
Suntivich
,
K. J.
May
,
E. E.
Perry
, and
Y.
Shao-Horn
, “
Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions
,”
J. Phys. Chem. Lett.
3
,
399
404
(
2012
).
26.
T.
Weber
 et al., “
In situ studies of the electrochemical reduction of a supported ultrathin single-crystalline RuO2(110) layer in an acidic environment
,”
J. Phys. Chem. C
123
,
3979
3987
(
2019
).
27.
Z.
Liang
 et al., “
Adsorption and oxidation of ethylene on the stoichiometric and O-rich RuO2(110) surfaces
,”
J. Phys. Chem. C
121
,
20375
20386
(
2017
).
28.
T.
Li
 et al., “
Adsorption and oxidation of n-butane on the stoichiometric RuO2(110) surface
,”
J. Phys. Chem. C
120
,
9863
9873
(
2016
).
29.
M. P.
Warusawithana
 et al., “
LaAlO3 stoichiometry is key to electron liquid formation at LaAlO3/SrTiO3 interfaces
,”
Nat. Commun.
4
,
2351
(
2013
).
30.
M. J.
Aziz
, “
Film growth mechanisms in pulsed laser deposition
,”
Appl. Phys. A
93
,
579
587
(
2008
).
31.
V.
Climent
,
R.
Gomez
,
J. M.
Orts
, and
J. M.
Feliu
, “
Thermodynamic analysis of the temperature dependence of OH adsorption on Pt(111) and Pt(100) electrodes in acidic media in the absence of specific anion adsorption
,”
J. Phys. Chem. B
110
,
11344
11351
(
2006
).
32.
M. W.
Chase
, “
NIST-JANAF themochemical tables, fourth edition. Part I
,”
J. Phys. Chem. Ref. Data
Monograph 9
,
1
1951
(
1998
).
33.
G. A.
Kimmel
 et al., “
Polarization- and azimuth-resolved infrared spectroscopy of water on TiO2(110): Anisotropy and the hydrogen-bonding network
,”
J. Phys. Chem. Lett.
3
,
778
784
(
2012
).
34.
J.
Lee
,
D. C.
Sorescu
,
X. Y.
Deng
, and
K. D.
Jordan
, “
Water chain formation on TiO2(110)
,”
J. Phys. Chem. Lett.
4
,
53
57
(
2013
).
35.
B. C.
Dallin
,
H.
Yeon
,
A. R.
Ostwalt
,
N. L.
Abbott
, and
R. C.
Van Lehn
, “
Molecular order affects interfacial water structure and temperature-dependent hydrophobic interactions between nonpolar self-assembled monolayers
,”
Langmuir
35
,
2078
2088
(
2019
).
36.
K. A.
Stoerzinger
 et al., “
Reactivity of perovskites with water: Role of hydroxylation in wetting and implications for oxygen electrocatalysis
,”
J. Phys. Chem. C
119
,
18504
18512
(
2015
).
You do not currently have access to this content.