An equation of state for the bulk viscosity of liquid noble gases is proposed. On the basis of dedicated equilibrium molecular dynamics simulations, a multi-mode relaxation ansatz is used to obtain precise bulk viscosity data over a wide range of liquid states. From this dataset, the equation of state emerges as a two-parametric power function with both parameters showing a conspicuous saturation behavior over temperature. After passing a temperature threshold, the bulk viscosity is found to vary significantly over density, a behavior that resembles the frequency response of a one pole low-pass filter. The proposed equation of state is in good agreement with available experimental sound attenuation data.

1.
G. G.
Stokes
, “
On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids
,”
Cambridge Philos. Soc.
8
,
287
(
1845
).
2.
A. L.
Cauchy
, “
Recherches sur l’equilibre et le mouvement intérieur des corps solides ou fluides. Élastiques ou non élastiques
,”
Bull. Soc. Philomath.
2
,
9
(
1823
).
3.
L.
Rosenhead
, “
Introduction. The second coefficient of viscosity: A brief review of fundamentals
,”
Proc. R. Soc. London, Ser. A
226
,
1
(
1954
).
4.
P. E.
Doak
, “
Vorticity generated by sound
,”
Proc. R. Soc. London, Ser. A
226
,
7
(
1954
).
5.
E. G.
Richardson
, “
Acoustic experiments relating to the coefficient of viscosity of various liquids
,”
Proc. R. Soc. London, Ser. A
226
,
16
(
1954
).
6.
R. O.
Davies
, “
Kinetic and thermodynamic aspects of the second coefficient of viscosity
,”
Proc. R. Soc. London, Ser. A
226
,
24
(
1954
).
7.
G. I.
Taylor
, “
The two coefficients of viscosity for an incompressible fluid containing air bubbles
,”
Proc. R. Soc. London, Ser. A
226
,
34
(
1954
).
8.
G. I.
Taylor
, “
Notes on the volume viscosity of water containing bubbles
,”
Proc. R. Soc. London, Ser. A
226
,
38
(
1954
).
9.
R. O.
Davies
, “
A note on Sir Geoffrey Taylor’s paper
,”
Proc. R. Soc. London, Ser. A
226
,
39
(
1954
).
10.
H. O.
Kneser
, “
Transport and relaxation phenomena
,”
Proc. R. Soc. London, Ser. A
226
,
40
(
1954
).
11.
J. E.
Piercy
and
J.
Lamb
, “
Acoustic streaming in liquids
,”
Proc. R. Soc. London, Ser. A
226
,
43
(
1954
).
12.
J. H.
Andreae
and
J.
Lamb
, “
Ultrasonic measurements and the second viscosity of carbon disulphide
,”
Proc. R. Soc. London, Ser. A
226
,
51
(
1954
).
13.
J.
Meixner
, “
On the thermodynamic theory of the second viscosity
,”
Proc. R. Soc. London, Ser. A
226
,
51
(
1954
).
14.
S. M.
Karim
, “
Experimental determination of the second viscosity
,”
Proc. R. Soc. London, Ser. A
226
,
56
(
1954
).
15.
J. G.
Oldroyd
, “
Note on the hydrodynamic and thermodynamic pressures
,”
Proc. R. Soc. London, Ser. A
226
,
57
(
1954
).
16.
C. A.
Truesdell
, “
The present status of the controversy regarding the bulk viscosity of fluids
,”
Proc. R. Soc. London, Ser. A
226
,
59
(
1954
).
17.
E. N. da C.
Andrade
, “
Review of discussion
,”
Proc. R. Soc. London, Ser. A
226
,
65
(
1954
).
18.
R. O.
Davies
and
L.
Rosenhead
, “
The two viscosities of fluids
,”
Nature
173
,
1209
(
1954
).
19.
B.
Riemann
, “
Über die Fortpflanzung ebenener Luftwellen von endlicher Schwingungsbreite
,” in
Collected Works of Bernhard Riemann
, edited by
H.
Weber
(
Dover
,
1953
), p.
157
.
20.
L.
Euler
, “
Principes généraux du mouvement des fluides
,”
Mém. Acad. Sci. Berlin
11
,
274
(
1755
).
21.
D.
Gilbarg
and
D.
Paolucci
, “
The structure of shock waves in the continuum theory of fluids
,”
J. Ration. Mech. Anal.
2
,
617
(
1953
), see https://www.jstor.org/stable/24900350.
22.
R.
Becker
, “
Stoßwelle und Detonation
,”
Z. Phys.
8
,
321
(
1921
).
23.
H.
Grad
, “
The profile of a steady shock wave
,”
Commun. Pure Appl. Math.
5
,
257
(
1952
).
24.
W.
Tollmien
,
H.
Schlichting
,
H.
Görtler
, and
F. W.
Riegels
, “
Zur Theorie des Verdichtungsstoßes
,” in , edited by
F. W.
Riegels
(
Springer
,
Berlin
,
1961
).
25.
W. G.
Hoover
, “
Structure of a shock-wave front in a liquid
,”
Phys. Rev. Lett.
42
,
1531
(
1979
).
26.
B. L.
Holian
,
W. G.
Hoover
,
B.
Moran
, and
G. K.
Straub
, “
Shock-wave structure via nonequilibrium molecular dynamics and Navier-Stokes continuum mechanics
,”
Phys. Rev. A
22
,
2798
(
1980
).
27.
G.
Emanuel
and
B. M.
Argrow
, “
Linear dependence of the shock wave thickness on bulk viscosity
,”
Phys. Fluids
6
,
3203
(
1994
).
28.
T. G.
Elizarova
,
A. A.
Khokhlov
, and
S.
Montero
, “
Numerical simulation of shock wave structure in nitrogen
,”
Phys. Fluids
19
,
068102
(
2007
).
29.
A. V.
Chikitkin
,
B. V.
Rogov
,
G. A.
Tirsky
, and
S. V.
Utyuzhnikov
, “
Effect of bulk viscosity in supersonic flow past spacecraft
,”
Appl. Numer. Math.
93
,
47
(
2015
).
30.
S.
Taniguchi
,
T.
Arima
,
T.
Ruggeri
, and
M.
Sugiyama
, “
Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure
,”
Int. J. Nonlinear Mech.
79
,
66
(
2016
).
31.
M.
van Dyke
, “
Second-order compressible boundary layer theory with application to blunt bodies in hypersonic flow
,” in
Hypersonic Flow Research
, edited by
F. R.
Riddell
(
Academic Press
,
1962
), p.
37
.
32.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
Princeton University Press
,
1986
).
33.
M.
Trusler
,
Physical Acoustics and Metrology of Fluids
(
CRC Press
,
1991
).
34.
C.
Eckart
, “
Vortices and streams caused by sound waves
,”
Phys. Rev.
73
,
68
(
1948
).
35.
L. N.
Liebermann
, “
Second viscosity of liquids
,”
Phys. Rev.
75
,
1415
(
1949
).
36.
J. J.
Markham
, “
Second-order acoustic fields: Streaming with viscosity and relaxation
,”
Phys. Rev.
86
,
497
(
1952
).
37.
P. J.
Westervelt
, “
The theory of steady rotational flow generated by a sound field
,”
J. Acoust. Soc. Am.
25
,
60
(
1953
).
38.
W. L.
Nyborg
, “
Acoustic streaming due to attenuated plane waves
,”
J. Acoust. Soc. Am.
25
,
68
(
1953
).
39.
J.
Lighthill
, “
Acoustic streaming
,”
J. Sound Vib.
61
,
391
(
1978
).
40.
G.
Emanuel
, “
Effect of bulk viscosity on a hypersonic boundary layer
,”
Phys. Fluids
4
,
491
(
1992
).
41.
M. S.
Cramer
and
F.
Bahmani
, “
Effect of large bulk viscosity on large-Reynolds-number flows
,”
J. Fluid Mech.
751
,
142
(
2014
).
42.
H. R.
van den Berg
,
C. A.
ten Seldam
, and
P. S.
van der Gulik
, “
Compressible laminar flow in a capillary
,”
J. Fluid Mech.
246
,
1
(
1993
).
43.
J. C.
Harley
,
Y.
Huang
,
H. H.
Bau
, and
J. N.
Zemel
, “
Gas flow in micro-channels
,”
J. Fluid Mech.
284
,
257
(
1995
).
44.
Y.
Zohar
,
S. Y. K.
Lee
,
W. Y.
Lee
,
L.
Jiang
, and
P.
Tong
, “
Subsonic gas flow in a straight and uniform microchannel
,”
J. Fluid Mech.
472
,
125
(
2002
).
45.
D. C.
Venerus
, “
Laminar capillary flow of compressible viscous fluids
,”
J. Fluid Mech.
555
,
59
(
2006
).
46.
E. G.
Taliadorou
,
M.
Neophytou
, and
G. C.
Georgiou
, “
Perturbation solutions of Poiseuille flows of weakly compressible Newtonian liquids
,”
J. Non-Newtonian Fluid Mech.
163
,
25
(
2009
).
47.
D. C.
Venerus
and
D. J.
Bugajsky
, “
Compressible laminar flow in a channel
,”
Phys. Fluids
22
,
046101
(
2010
).
48.
F.
Bahmani
and
M.
Cramer
, “
Suppression of large shock-induced separation in fluids having large bulk viscosities
,”
J. Fluid Mech.
756
,
R2
(
2014
).
49.
S.
Bhola
and
T. K.
Sengupta
, “
Roles of bulk viscosity on transonic shock-wave/boundary layer interactions
,”
Phys. Fluids
31
,
096101
(
2019
).
50.
S.
Chen
,
X.
Wang
,
J.
Wang
,
M.
Wan
,
H.
Li
, and
S.
Chen
, “
Effects of bulk viscosity on compressible homogeneous turbulence
,”
Phys. Fluids
31
,
085115
(
2019
).
51.
S.
Pan
and
E.
Johnsen
, “
The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence
,”
J. Fluid Mech.
833
,
717
(
2017
).
52.
G.
Kirchhoff
, “
Über den Einfluß der Wärmeleitung in einem Gas auf die Schallbewegung
,”
Ann. Phys.
210
,
177
(
1868
).
53.
N.
Neklepajev
, “
Über die Absorption kurzer akustischer Wellen in der Luft
,”
Ann. Phys.
340
,
175
(
1911
).
54.
T. P.
Abello
, “
Absorption of ultrasonic waves by various gases
,”
Phys. Rev.
31
,
1083
(
1928
).
55.
W. H.
Pielemeier
, “
The Pierce acoustic interferometer as an instrument for the determination of velocity and absorption
,”
Phys. Rev.
34
,
1184
(
1929
).
56.
E.
Großmann
, “
Schallabsorptionsmessung in Gasen bei hohen Frequenzen
,”
Ann. Phys.
405
,
681
(
1932
).
57.
R. W.
Curtis
, “
An experimental determination of ultrasonic absorption an reflexion coefficients in air and in carbon dioxide
,”
Phys. Rev.
46
,
811
(
1934
).
58.
K. F.
Herzfeld
and
F. O.
Rice
, “
Dispersion and absorption of high frequency sound waves
,”
Phys. Rev.
31
,
691
(
1928
).
59.
H. O.
Kneser
, “
Schallabsorption in mehratomigen Gasen
,”
Ann. Phys.
408
,
337
(
1933
).
60.
H. O.
Kneser
, “
Schallabsorption und -dispersion in Flüssigkeiten
,”
Ann. Phys.
424
,
277
(
1938
).
61.
L.
Tisza
, “
Supersonic absorption and Stokes’ viscosity relation
,”
Phys. Rev.
61
,
531
(
1942
).
62.
W. E.
Meador
,
G. A.
Miner
, and
L. W.
Townsend
, “
Bulk viscosity as a relaxation parameter: Fact or fiction?
,”
Phys. Fluids
8
,
258
(
1996
).
63.
R. A.
Rapuano
, “
Ultrasonic absorption from 75 to 280 Mc/sec
,”
Phys. Rev.
72
,
78
(
1947
).
64.
W. G.
Schneider
, “
Sound velocity and sound absorption in the critical region
,”
Can. J. Chem.
29
,
243
(
1951
).
65.
A. G.
Chynoweth
and
W. G.
Schneider
, “
Ultrasonic propagation in xenon in the region of its critical temperature
,”
J. Chem. Phys.
20
,
1777
(
1952
).
66.
H. D.
Parbrook
and
E. G.
Richardson
, “
Propagation of ultrasonic waves in vapours near the critical point
,”
Proc. Phys. Soc., Sect. B
65
,
437
(
1952
).
67.
M.
Fixman
, “
Ultasonic attenuation in the critical region
,”
J. Chem. Phys.
33
,
1363
(
1960
).
68.
W.
Botch
and
M.
Fixman
, “
Sound absorption in gases in the critical region
,”
J. Chem. Phys.
42
,
199
(
1965
).
69.
M.
Fixman
, “
Transport coefficients in the gas critical region
,”
J. Chem. Phys.
47
,
2808
(
1967
).
70.
K.
Kawasaki
, “
Correlation-function approach to the transport coefficients near the critical point. I
,”
Phys. Rev.
150
,
291
(
1966
).
71.
K.
Kawasaki
, “
Sound attenuation and dispersion near the liquid-gas critical point
,”
Phys. Rev. A
1
,
1750
(
1970
).
72.
L. P.
Kadanoff
,
W.
Götze
,
D.
Hamblen
,
R.
Hecht
,
E. A. S.
Lewis
,
V. V.
Palciauskas
,
M.
Rayl
, and
J.
Swift
, “
Static phenomena near critical points: Theory and experiment
,”
Rev. Mod. Phys.
39
,
395
(
1967
).
73.
L. P.
Kadanoff
and
J.
Swift
, “
Transport coefficients near the liquid-gas critical point
,”
Phys. Rev.
166
,
89
(
1968
).
74.
L.
Hall
, “
The origin of excess ultrasonic absorption in water
,”
Phys. Rev.
71
,
318
(
1947
).
75.
L.
Hall
, “
The origin of ultrasonic absorption in water
,”
Phys. Rev.
73
,
775
(
1948
).
76.
D.
Sette
, “
Ultrasonic absorption in liquid mixtures and structural effects
,”
J. Chem. Phys.
21
,
558
(
1953
).
77.
K. F.
Herzfeld
and
T. A.
Litovitz
,
Absorption and Dispersion of Ultrasonic Waves
(
Academic Press
,
1959
).
78.
C. W.
Garland
,
D.
Eden
, and
L.
Mistura
, “
Critical sound absorption in xenon
,”
Phys. Rev. Lett.
25
,
1161
(
1970
).
79.
P. E.
Mueller
,
D.
Eden
,
C. W.
Garland
, and
R. C.
Williamson
, “
Ultrasonic attenuation and dispersion in xenon near its critical point
,”
Phys. Rev. A
6
,
2272
(
1972
).
80.
P. A.
Fleury
and
J.-P.
Boon
, “
Brillouin scattering in simple liquids: Argon and neon
,”
Phys. Rev.
186
,
244
(
1969
).
81.
A. S.
Pine
, “
Velocity and attenuation of hypersonic waves in liquid nitrogen
,”
J. Chem. Phys.
51
,
5171
(
1969
).
82.
B. Y.
Baharudin
,
D. A.
Jackson
,
P. E.
Schoen
, and
J.
Rouch
, “
Bulk viscosity of liquid argon, krypton and xenon
,”
Phys. Lett. A
51
,
409
(
1975
).
83.
X.
Pan
,
M. N.
Shneider
, and
R. B.
Miles
, “
Coherent Rayleigh-Brillouin scattering
,”
Phys. Rev. Lett.
89
,
183001
(
2002
).
84.
J.
Xu
,
X.
Ren
,
W.
Gong
,
R.
Dai
, and
D.
Liu
, “
Measurement of the bulk viscosity of liquid by Brillouin scattering
,”
Appl. Opt.
42
,
6704
(
2003
).
85.
X.
Pan
,
M. N.
Shneider
, and
R. B.
Miles
, “
Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide
,”
Phys. Rev. A
71
,
045801
(
2005
).
86.
A. S.
Meijer
,
A. S.
de Wijn
,
M. F. E.
Peters
,
N. J.
Dam
, and
W.
van de Water
, “
Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory
,”
J. Chem. Phys.
133
,
164315
(
2010
).
87.
X.
He
,
H.
Wei
,
J.
Shi
,
J.
Liu
,
S.
Li
,
W.
Chen
, and
X.
Mo
, “
Experimental measurement of bulk viscosity of water based on stimulated Brillouin scattering
,”
Opt. Commun.
285
,
4120
(
2012
).
88.
Z.
Gu
and
W.
Ubachs
, “
A systematic study of Rayleigh-Brillouin scattering in air, N2, and O2 gases
,”
J. Chem. Phys.
141
,
104320
(
2014
).
89.
Z.
Gu
,
W.
Ubachs
, and
W.
van de Water
, “
Rayleigh-Brillouin scattering of carbon dioxide
,”
Opt. Lett.
39
,
3301
(
2014
).
90.
Y.
Ma
,
H.
Li
,
Z.
Gu
,
W.
Ubachs
,
Y.
Yu
,
J.
Huang
,
B.
Zhou
,
Y.
Wand
, and
K.
Liang
, “
Analysis of Rayleigh-Brillouin spectral profiles and Brillouin shifts in nitrogen gas and air
,”
Opt. Express
22
,
2092
(
2014
).
91.
G. W.
Pierce
, “
Piezoelectric crystal oscillators applied to the precision measurement of the velocity of sound in air and CO2 at high frequency
,”
Proc. Am. Acad. Arts Sci.
60
,
271
(
1925
).
92.
M.
Kohler
, “
Schallabsorption in Mischungen einatomiger Gase
,”
Ann. Phys.
431
,
209
(
1941
).
93.
J. M. M.
Pinkerton
, “
The absorption of ultrasonic waves in liquids and its relation to molecular constitution
,”
Proc. Phys. Soc., Sect. B
62
,
129
(
1949
).
94.
M.
Pancholy
, “
Temperature variation of velocity and absorption coefficient of ultrasonic waves in heavy water
,”
J. Acoust. Soc. Am.
25
,
1003
(
1953
).
95.
T. A.
Litovitz
and
E. H.
Carnevale
, “
Effect of pressure on sound propagation in water
,”
J. Appl. Phys.
26
,
816
(
1955
).
96.
W.
Tempest
and
H. D.
Parbrook
, “
The absorption of sound in argon, nitrogen and oxygen
,”
Acustica
7
,
354
(
1957
).
97.
D. G.
Naugle
and
C. F.
Squire
, “
Ultrasonic attenuation in liquid argon
,”
J. Chem. Phys.
42
,
3725
(
1965
).
98.
D. G.
Naugle
, “
Excess ultrasonic attenuation and intrinsic volume viscosity in liquid argon
,”
J. Chem. Phys.
44
,
741
(
1966
).
99.
D. G.
Naugle
,
J. H.
Lunsford
, and
J. R.
Singer
, “
Volume viscosity in liquid argon at high pressure
,”
J. Chem. Phys.
45
,
4669
(
1966
).
100.
D. S.
Swyt
,
J. F.
Havlice
, and
E. F.
Carome
, “
Ultrasonic absorption in liquid argon
,”
J. Chem. Phys.
47
,
1199
(
1967
).
101.
W. M.
Madigosky
, “
Density dependence of bulk viscosity in argon
,”
J. Chem. Phys.
46
,
4441
(
1967
).
102.
J. R.
Singer
and
J. H.
Lunsford
, “
Ultrasonic attenuation and volume viscosity in liquid nitrogen
,”
J. Chem. Phys.
47
,
811
(
1967
).
103.
J. R.
Singer
, “
Excess ultrasonic attenuation and volume viscosity in liquid methane
,”
J. Chem. Phys.
51
,
4729
(
1969
).
104.
A. E.
Victor
and
R. T.
Beyer
, “
Ultrasonic absorption in liquid oxygen and nitrogen
,”
J. Chem. Phys.
52
,
1573
(
1970
).
105.
J.
Allegra
,
S.
Hawley
, and
G.
Holton
, “
Pressure dependence of the ultrasonic absorption in toluene and hexane
,”
J. Acoust. Soc. Am.
47
,
144
(
1970
).
106.
E. V.
Larson
,
D. G.
Naugle
, and
T. W.
Aldair
, “
Ultrasonic velocity and attenuation in liquid neon
,”
J. Chem. Phys.
54
,
2429
(
1971
).
107.
S. K.
Kor
,
O. N.
Awasthi
,
G.
Rai
, and
S. C.
Deorani
, “
Structural absorption of ultrasonic waves in methanol
,”
Phys. Rev. A
3
,
390
(
1971
).
108.
S. K.
Kor
,
S. C.
Deorani
, and
B. K.
Singh
, “
Origin of ultrasonic absorption in methanol
,”
Phys. Rev. A
3
,
1780
(
1971
).
109.
S. K.
Kor
,
S. C.
Deorani
,
B. K.
Singh
,
R.
Prasad
, and
U.
Tandon
, “
Ultrasonic study of structural relaxation in ethanol
,”
Phys. Rev. A
4
,
1299
(
1971
).
110.
J. A.
Cowan
and
R. N.
Ball
, “
Temperature dependence of bulk viscosity in liquid argon
,”
Can. J. Phys.
50
,
1881
(
1972
).
111.
G.
Rai
,
B. K.
Singh
, and
O. N.
Awasthi
, “
Structural absorption of ultrasonic waves in associated liquids
,”
Phys. Rev. A
5
,
918
(
1972
).
112.
J. A.
Cowan
and
P. W.
Ward
, “
Ultrasonic attenuation of the bulk viscosity of liquid argon near the critical point
,”
Can. J. Phys.
51
,
2219
(
1973
).
113.
P. W.
Ward
,
J. A.
Cowan
, and
R. K.
Pathria
, “
Critical attenuation of ultrasound in argon
,”
Can. J. Phys.
53
,
29
(
1975
).
114.
G. J.
Prangsma
,
A. J.
Alberga
, and
J. J. M.
Beenakker
, “
Ultrasonic determination of the volume viscosity of N2, CO, CH4 and CD4 between 77 and 300 K
,”
Physica
64
,
278
(
1973
).
115.
S. A.
Mikhailenko
,
B. G.
Dudar
, and
V. A.
Shmidt
, “
Volume viscosity and relaxation times in monoatomic classical fluids
,”
Fiz. Nizk. Temp.
1
,
224
(
1975
).
116.
P.
Malbrunot
,
A.
Boyer
,
E.
Charles
, and
H.
Abachi
, “
Experimental bulk viscosities of argon, krypton, and xenon near their triple point
,”
Phys. Rev. A
27
,
1523
(
1983
).
117.
J. A.
Cowan
and
R. N.
Ball
, “
Ultrasonic attenuation and bulk viscosity in liquid krypton
,”
Can. J. Phys.
58
,
74
(
1980
).
118.
J. A.
Cowan
and
J. W.
Leech
, “
Ultrasonic attenuation and bulk viscosity of liquid xenon
,”
Can. J. Phys.
59
,
1280
(
1981
).
119.
J. A.
Cowan
and
J. W.
Leech
, “
Critical region ultrasonic attenuation in the condensed inert gases
,”
Can. J. Phys.
61
,
895
(
1983
).
120.
A. S.
Dukhin
and
P. J.
Goetz
, “
Bulk viscosity and compressibility measurement using acoustic spectroscopy
,”
J. Chem. Phys.
130
,
124519
(
2009
).
121.
M. J.
Holmes
,
N. G.
Paker
, and
M. J. W.
Povey
, “
Temperature dependence of bulk viscosity in water using acoustic spectroscopy
,”
J. Phys.: Conf. Ser.
269
,
012011
(
2011
).
122.
J.
Thoen
and
C. W.
Garland
, “
Sound absorption and dispersion as a function of density near the critical point of xenon
,”
Phys. Rev. A
10
,
1311
(
1974
).
123.
C.
Tegeler
,
R.
Span
, and
W.
Wagner
, “
A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa
,”
J. Phys. Chem. Ref. Data
28
,
779
(
1999
).
124.
E. W.
Lemmon
and
R. T.
Jacobsen
, “
Viscosity and thermal conductivity equations for nitrogen, oxygen, argon and air
,”
Int. J. Thermophys.
25
,
21
(
2004
).
125.
E. W.
Lemmon
and
R.
Span
, “
Short fundamental equations of state for 20 industrial fluids
,”
J. Chem. Eng. Data
51
,
785
(
2006
).
126.
M. L.
Huber
, “
Models for viscosity, thermal conductivity, and surface tension of selected pure fluids as implemented in REFPROP v10.0
,” Technical Report No. 8209,
National Institute for Standards and Technology
,
2014
.
127.
R.
Katti
,
R. T.
Jacobsen
,
R. B.
Stewart
, and
M.
Jahangiri
, “
Thermodynamic properties of neon for temperatures from the triple point to 700 K at pressures to 700 MPa
,” in , edited by
R. W.
Fast
(
Springer
,
1986
), pp.
1189
1197
.
128.
L.
Claes
,
L. M.
Hülskämper
,
E.
Baumhögger
,
N.
Feldmann
,
R. S.
Chatwell
,
J.
Vrabec
, and
B.
Henning
, “
Acoustic absoprtion measurement for the determination of the bulk viscosity of pure fluids
,”
TM - Tech. Mess.
86
,
2
6
(
2019
).
129.
J. R.
Taylor
,
Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
, 2nd ed. (
University Science Books
,
1997
).
130.
G.
Rutkai
,
M.
Thol
,
R.
Span
, and
J.
Vrabec
, “
How well does the Lennard-Jones potential represent the thermodynamic properties of noble gases?
,”
Mol. Phys.
115
,
1104
(
2017
).
131.
M. S.
Green
, “
Markoff random process and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids
,”
J. Chem. Phys.
22
,
398
(
1954
).
132.
R.
Kubo
, “
Statistical-mechanical theory of irreversible processes. I. General theory of simple applications to magnetic and conductive problems
,”
J. Phys. Soc. Jpn.
12
,
570
(
1957
).
133.
R.
Kubo
, “
The fluctuation-dissipation theorem
,”
Rep. Prog. Phys.
29
,
255
(
1966
).
134.
L.
Verlet
, “
Computer “experiments” on classical fluids. I. Properties of Lennard-Jones molecules
,”
Phys. Rev.
159
,
98
(
1967
).
135.
D.
Levesque
and
L.
Verlet
, “
Computer “experiments” on classical fluids. III. Time-dependent self-correlation functions
,”
Phys. Rev. A
2
,
2514
(
1970
).
136.
D.
Levesque
,
L.
Verlet
, and
J.
Kürkijarvi
, “
Computer “experiments” on classical fluids. IV. Transport properties and time-correlation functions of the Lennard-Jones liquid near its triple point
,”
Phys. Rev. A
7
,
1690
(
1973
).
137.
S. V.
Lishchuk
, “
Role of three-body interactions in formation of bulk viscosity in liquid argon
,”
J. Chem. Phys.
136
,
164501
(
2012
).
138.
F.
Jaeger
,
O. K.
Matar
, and
E. A.
Müller
, “
Bulk viscosity of molecular liquids
,”
J. Chem. Phys.
148
,
174504
(
2018
).
139.
G.
Rutkai
,
A.
Köster
,
G.
Guevara-Carrion
,
T.
Janzen
,
M.
Schappals
,
C. W.
Glass
,
M.
Bernreuther
,
A.
Wafai
,
S.
Stephan
,
M.
Kohns
,
S.
Reiser
,
S.
Deublein
,
M. T.
Horsch
,
H.
Hasse
, and
J.
Vrabec
, “
ms2: A molecular simulation tool for thermodynamic properties, release 3.0
,”
Comput. Phys. Commun.
221
,
343
(
2017
).
140.
K.
Meier
,
A.
Laesecke
, and
S.
Kabelac
, “
Transport coefficients of the Lennard-Jones model fluid. III. Bulk viscosity
,”
J. Chem. Phys.
122
,
014513
(
2005
).
141.
V. G.
Baidakov
and
S. P.
Protsenko
, “
Metastable Lennard-Jones fluids. III. Bulk viscosity
,”
J. Chem. Phys.
141
,
114503
(
2014
).
142.
A.
Zaragoza
,
M. A.
Gonzales
,
L.
Joly
,
I.
López-Montero
,
M. A.
Canales
,
A. L.
Benavides
, and
C.
Valeriani
, “
Molecular dynamics study of nanoconfined TIP4P/2005 water: How confinement and temperature affect diffusion and viscosity
,”
Phys. Chem. Chem. Phys.
21
,
13653
(
2019
).
143.
G. S.
Fanourgakis
,
J. S.
Medina
, and
R.
Prosmiti
, “
Determining the bulk viscosity of rigid water models
,”
J. Phys. Chem. A
116
,
2564
(
2012
).
144.
G.-J.
Guo
,
Y.-G.
Zhang
,
K.
Refson
, and
Y.-J.
Zhao
, “
Viscosity and stress autocorrelation function in supercooled water: A molecular dynamics study
,”
Mol. Phys.
100
,
2617
(
2002
).
145.
G.
Delgado-Barrio
,
P.
Villareal
,
G.
Winter
,
J. S.
Medina
,
B.
González
,
J. V.
Alemán
,
J. L.
Gomez
,
P.
Sangrá
,
J. J.
Santana
, and
M. E.
Torres
, “
Viscosity of liquid water via equilibrium molecular dynamics simulations
,” in
Frontiers in Quantum Systems in Chemistry and Physics
, edited by
S.
Wilson
,
P. J.
Grout
,
G.
Delgado-Barrio
, and
P.
Piecuch
(
Springer
,
2008
), pp.
351
361
.
146.
J. S.
Medina
,
R.
Prosmiti
,
P.
Villarreal
,
G.
Delgado-Barrio
,
G.
Winter
,
B.
González
,
J. V.
Alemán
, and
C.
Collado
, “
Molecular dynamics simulations of rigid and flexible water models: Temperature dependence of viscosity
,”
Chem. Phys.
388
,
9
(
2011
).
147.
R.
Kohlrausch
, “
Theorie des elektrischen Rückstandes in der Leidner Flasche
,”
Ann. Phys.
167
,
179
(
1854
).
148.
G.
Williams
and
D. C.
Watts
, “
Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function
,”
Trans. Faraday Soc.
66
,
80
(
1970
).
149.
R. D.
Mountain
and
R.
Zwanig
, “
Shear relaxation times of simple fluids
,”
J. Chem. Phys.
44
,
2777
(
1966
).
150.
T. A.
Litovitz
and
C. M.
Davis
, “
Structural and shear relaxation in liquids
,” in
Peroperties of Gases, Liquids and Solutions
, Physical Acoustics, edited by
W. P.
Mason
(
Academic Press
,
1965
), Vol. 2, pp.
281
349
.
151.
G. L.
Murphy
, “
Big-bang model without singularities
,”
Phys. Rev. D
8
,
4231
(
1973
).
152.
V. A.
Belinskii
and
I. M.
Khalatnikov
, “
Influence of viscosity on the character of cosmological evolution
,”
Zh. Eksp. Theor. Fiz.
69
,
401
(
1975
).
153.
I.
Brevik
,
E.
Elizalde
,
S.
Nojiri
, and
S. D.
Odintsov
, “
Viscous little rip cosmology
,”
Phys. Rev. D
84
,
103508
(
2011
).
154.
R.
Colistete
,
J. C.
Fabris
,
J.
Tossa
, and
W.
Zimdahl
, “
Bulk viscous cosmology
,”
Phys. Rev. D
76
,
103516
(
2007
).
155.
M.
Cruz
,
N.
Cruz
, and
S.
Lepe
, “
Accelerated and decelerated expansion in a causal dissipative cosmology
,”
Phys. Rev. D
96
,
124020
(
2017
).
156.
B.
Li
and
J. D.
Barrow
, “
Does bulk viscosity create a viable unified dark matter model?
,”
Phys. Rev. D
79
,
103521
(
2009
).
157.
S. R.
de Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
(
Dover
,
1962
).
158.
D.
Jou
,
J.
Casas-Vázquez
, and
G.
Lebon
,
Extended Irreversible Thermodynamics
(
Springer
,
2010
).
159.
P.
Borgelt
,
C.
Hoheisel
, and
G.
Stell
, “
Exact molecular dynamics and kinetic theory results for thermal transport coefficients of the Lennard-Jones argon fluid in a wide range of states
,”
Phys. Rev. A
42
,
789
(
1990
).
160.
K.
Tankeshwar
, “
Bulk viscosity and the relation between transport coefficients
,”
Phys. Chem. Liq.
24
,
91
(
1991
).

Supplementary Material

You do not currently have access to this content.