We propose a multiconfiguration density functional combining a short-range density functional approximation with a novel long-range correction for dynamic correlation effects. The correction is derived from the adiabatic connection formalism so that the resulting functional requires access only to one- and two-electron reduced density matrices of the system. In practice, the functional is formulated for wavefunctions of the complete active space (CAS) type and the short-range density functional part is made dependent on the on-top pair density via auxiliary spin densities. The latter allows for reducing the self-interaction and the static correlation errors without breaking the spin symmetry. We study the properties and the performance of the non-self-consistent variant of the method, termed lrAC0-postCAS. Numerical demonstration on a set of dissociation energy curves and excitation energies shows that lrAC0-postCAS provides accuracy comparable with more computationally expensive ab initio rivals.

1.
H.
Stoll
and
A.
Savin
, in
Density Functional Methods in Physics
, edited by
R.
Dreizler
and
J.
da Providencia
(
Plenum
,
New York
,
1985
), pp.
177
207
.
2.
A.
Savin
, “
On degeneracy, near degeneracy and density functional theory
,” in
Recent Developments of Modern Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
,
Amsterdam
,
1996
), pp.
327
357
.
3.
E.
Fromager
,
J.
Toulouse
, and
H.
Jensen
, “
On the universality of the long-/short-range separation in multiconfigurational density-functional theory
,”
J. Chem. Phys.
126
,
074111
(
2007
).
4.
E.
Goll
,
H.-J.
Werner
,
H.
Stoll
,
T.
Leininger
,
P.
Gori-Giorgi
, and
A.
Savin
, “
A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: Application to alkali-metal rare-gas dimers
,”
Chem. Phys.
329
,
276
282
(
2006
).
5.
R.
Pollet
,
A.
Savin
,
T.
Leininger
, and
H.
Stoll
, “
Combining multideterminantal wave functions with density functionals to handle near-degeneracy in atoms and molecules
,”
J. Chem. Phys.
116
,
1250
(
2002
).
6.
E.
Goll
,
M.
Ernst
,
F.
Moegle-Hofacker
, and
H.
Stoll
, “
Development and assessment of a short-range meta-GGA functional
,”
J. Chem. Phys.
130
,
234112
(
2009
).
7.
E.
Goll
,
H.
Werner
, and
H.
Stoll
, “
A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers
,”
Phys. Chem. Chem. Phys.
7
,
3917
3923
(
2005
).
8.
E.
Fromager
,
R.
Cimiraglia
, and
H. J. A.
Jensen
, “
Merging multireference perturbation and density-functional theories by means of range separation: Potential curves for Be2, Mg2, and Ca2
,”
Phys. Rev. A
81
,
024502
(
2010
).
9.
E. D.
Hedegård
,
J.
Toulouse
, and
H. J. A.
Jensen
, “
Multiconfigurational short-range density-functional theory for open-shell systems
,”
J. Chem. Phys.
148
,
214103
(
2018
).
10.
J.
Toulouse
,
I. C.
Gerber
,
G.
Jansen
,
A.
Savin
, and
J. G.
Angyán
, “
Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation
,”
Phys. Rev. Lett.
102
,
096404
(
2009
).
11.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
, “
Long-range–short-range separation of the electron-electron interaction in density-functional theory
,”
Phys. Rev. A
70
,
062505
(
2004
).
12.
S.
Paziani
,
S.
Moroni
,
P.
Gori-Giorgi
, and
G. B.
Bachelet
, “
Local-spin-density functional for multideterminant density functional theory
,”
Phys. Rev. B
73
,
155111
(
2006
).
13.
B.
Mussard
and
J.
Toulouse
, “
Fractional-charge and fractional-spin errors in range-separated density-functional theory
,”
Mol. Phys.
115
,
161
173
(
2017
).
14.
G.
Li Manni
,
R. K.
Carlson
,
S.
Luo
,
D.
Ma
,
J.
Olsen
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
Multiconfiguration pair-density functional theory
,”
J. Chem. Theory Comput.
10
,
3669
3680
(
2014
).
15.
A.
Becke
,
A.
Savin
, and
H.
Stoll
, “
Extension of the local-spin-density exchange-correlation approximation to multiplet states
,”
Theor. Chim. Acta
91
,
147
156
(
1995
).
16.
L.
Gagliardi
,
D. G.
Truhlar
,
G.
Li Manni
,
R. K.
Carlson
,
C. E.
Hoyer
, and
J. L.
Bao
, “
Multiconfiguration pair-density functional theory: A new way to treat strongly correlated systems
,”
Acc. Chem. Res.
50
,
66
73
(
2017
).
17.
S. J.
Stoneburner
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
MC-PDFT can calculate singlet-triplet splittings of organic diradicals
,”
J. Chem. Phys.
148
,
064108
(
2018
).
18.
P.
Sharma
,
V.
Bernales
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
Valence ππ* excitations in benzene studied by multiconfiguration pair-density functional theory
,”
J. Phys. Chem. Lett.
10
,
75
81
(
2019
).
19.
J. J.
Bao
,
L.
Gagliardi
, and
D. G.
Truhlar
, “
Weak interactions in alkaline earth metal dimers by pair-density functional theory
,”
J. Phys. Chem. Lett.
10
,
799
805
(
2019
).
20.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
, “
Dispersion-corrected mean-field electronic structure methods
,”
Chem. Rev.
116
,
5105
5154
(
2016
).
21.
J.
Toulouse
,
P.
Gori-Giorgi
, and
A.
Savin
, “
A short-range correlation energy density functional with multi-determinantal reference
,”
Theor. Chem. Acc.
114
,
305
308
(
2005
).
22.
P.
Gori-Giorgi
and
A.
Savin
, “
Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence
,”
Phys. Rev. A
73
,
032506
(
2006
).
23.
A.
Ferté
,
E.
Giner
, and
J.
Toulouse
, “
Range-separated multideterminant density-functional theory with a short-range correlation functional of the on-top pair density
,”
J. Chem. Phys.
150
,
084103
(
2019
).
24.
A.
Stoyanova
,
A. M.
Teale
,
J.
Toulouse
,
T.
Helgaker
, and
E.
Fromager
, “
Alternative separation of exchange and correlation energies in multi-configuration range-separated density-functional theory
,”
J. Chem. Phys.
139
,
134113
(
2013
).
25.
C. F.
Bender
and
E. R.
Davidson
, “
Studies in configuration interaction: The first-row diatomic hydrides
,”
Phys. Rev.
183
,
23
30
(
1969
).
26.
E.
Pastorczak
and
K.
Pernal
, “
Correlation energy from the adiabatic connection formalism for complete active space wave functions
,”
J. Chem. Theory Comput.
14
,
3493
3503
(
2018
).
27.
J.
Toulouse
,
A.
Savin
, and
H.
Flad
, “
Short-range exchange-correlation energy of a uniform electron gas with modified electron-electron interaction
,”
Int. J. Quantum Chem.
100
,
1047
1056
(
2004
).
28.
K.
Pernal
, “
Electron correlation from the adiabatic connection for multireference wave functions
,”
Phys. Rev. Lett.
120
,
013001
(
2018
).
29.
K.
Pernal
, “
Correlation energy from random phase approximations: A reduced density matrices perspective
,”
Int. J. Quant. Chem.
118
,
e25462
(
2018
).
30.
J.
Toulouse
,
W.
Zhu
,
J. G.
Angyán
, and
A.
Savin
, “
Range-separated density-functional theory with the random-phase approximation: Detailed formalism and illustrative applications
,”
Phys. Rev. A
82
,
032502
(
2010
).
31.
K.
Pernal
, “
Exact and approximate adiabatic connection formulae for the correlation energy in multireference ground and excited states
,”
J. Chem. Phys.
149
,
204101
(
2018
).
32.
E.
Pastorczak
and
K.
Pernal
, “
Electronic excited states from the adiabatic-connection formalism with complete active space wave functions
,”
J. Phys. Chem. Lett.
9
,
5534
5538
(
2018
).
33.
E.
Pastorczak
,
M.
Hapka
,
L.
Veis
, and
K.
Pernal
, “
Capturing the dynamic correlation for arbitrary spin-symmetry CASSCF reference with adiabatic connection approaches: Insights into the electronic structure of the tetramethyleneethane diradical
,”
J. Phys. Chem. Lett.
10
,
4668
4674
(
2019
).
34.
K.
Chatterjee
and
K.
Pernal
, “
Excitation energies from extended random phase approximation employed with approximate one- and two-electron reduced density matrices
,”
J. Chem. Phys.
137
,
204109
(
2012
).
35.
J.
Gräfenstein
and
D.
Cremer
, “
Development of a CAS-DFT method covering non-dynamical and dynamical electron correlation in a balanced way
,”
Mol. Phys.
103
,
279
308
(
2005
).
36.
O. V.
Gritsenko
,
R.
van Meer
, and
K.
Pernal
, “
Efficient evaluation of electron correlation along the bond-dissociation coordinate in the ground and excited ionic states with dynamic correlation suppression and enhancement functions of the on-top pair density
,”
Phys. Rev. A
98
,
062510
(
2018
).
37.
O.
Gritsenko
,
P.
Schipper
, and
E.
Baerends
, “
Exchange and correlation energy in density functional theory: Comparison of accurate density functional theory quantities with traditional Hartree–Fock based ones and generalized gradient approximations for the molecules Li2, N2, F2
,”
J. Chem. Phys.
107
,
5007
5015
(
1997
).
38.
J.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
39.
P.
Sharma
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
Active space dependence in multiconfiguration pair-density functional theory
,”
J. Chem. Theory Comput.
14
,
660
669
(
2018
).
40.
S.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors
,”
Mol. Phys.
19
,
553
566
(
1970
).
41.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
42.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
43.
G. C.
Lie
and
E.
Clementi
, “
Study of the electronic structure of molecules. XXII. Correlation energy corrections as a functional of the Hartree-Fock density and its application to the homonuclear diatomic molecules of the second row atoms
,”
J. Chem. Phys.
60
,
1288
(
1974
).
44.
C. X.
Almora-Díaz
,
A.
Ramírez-Solís
, and
C. F.
Bunge
, “
Symmetric dissociation of the water molecule with truncation energy error. A benchmark study
,”
Phys. Chem. Chem. Phys.
21
,
4953
4964
(
2019
).
45.
L.
Bytautas
,
N.
Matsunaga
,
T.
Nagata
,
M. S.
Gordon
, and
K.
Ruedenberg
, “
Accurate ab initio potential energy curve of F2. II. Core-valence correlations, relativistic contributions, and long-range interactions
,”
J. Chem. Phys.
127
,
204301
(
2007
).
46.
L.
Bytautas
,
T.
Nagata
,
M. S.
Gordon
, and
K.
Ruedenberg
, “
Accurate ab initio potential energy curve of F2. I. Nonrelativistic full valence configuration interaction energies using the correlation energy extrapolation by intrinsic scaling method
,”
J. Chem. Phys.
127
,
164317
(
2007
).
47.
S. S.
Dong
,
L.
Gagliardi
, and
D. G.
Truhlar
, “
Nature of the 11Bu and 21Ag excited states of butadiene and the Goldilocks principle of basis set diffuseness
,”
J. Phys. Chem. Lett.
15
,
4591
4601
(
2019
).
48.
A.
Kramida
and
W. C.
Martin
, “
A compilation of energy levels and wavelengths for the spectrum of neutral beryllium (Be I)
,”
J. Phys. Chem. Ref. Data
26
,
1185
1194
(
1997
).
49.
E. S.
Nielsen
,
P.
Joergensen
, and
J.
Oddershede
, “
Transition moments and dynamic polarizabilities in a second order polarization propagator approach
,”
J. Chem. Phys.
73
,
6238
6246
(
1980
).
50.
A. M.
Sand
,
C. E.
Hoyer
,
D. G.
Truhlar
, and
L.
Gagliardi
, “
State-interaction pair-density functional theory
,”
J. Chem. Phys.
149
,
024106
(
2018
).

Supplementary Material

You do not currently have access to this content.