Recent experiments have shown how nematically ordered tactoid shaped actin droplets can be reorganized and divided by the action of myosin molecular motors. In this paper, we consider how similar morphological changes can potentially be achieved under equilibrium conditions. Using simulations, both atomistic and continuum, and a simple macroscopic model, we explore how the nucleation dynamics, shape changes, and the final steady state of a nematic tactoid droplet can be modified by interactions with model adhesive colloids that mimic a myosin motor cluster. We show how tactoid reorganization may occur in an equilibrium colloidal-nematic setting. We then suggest based on the simple macroscopic model how the simulation models may be extended to potentially stabilize divided tactoids.

1.
I. I.
Smalyukh
, “
Liquid crystal colloids
,”
Annu. Rev. Condens. Matter Phys.
9
,
207
226
(
2018
).
2.
T. B.
Saw
,
A.
Doostmohammadi
,
V.
Nier
,
L.
Kocgozlu
,
S.
Thampi
,
Y.
Toyama
,
P.
Marcq
,
C. T.
Lim
,
J. M.
Yeomans
, and
B.
Ladoux
, “
Topological defects in epithelia govern cell death and extrusion
,”
Nature
544
,
212
(
2017
).
3.
L. S.
Hirst
and
G.
Charras
, “
Liquid crystals in living tissue
,”
Nature
544
,
164
(
2017
).
4.
T.
Sanchez
,
D. T. N.
Chen
,
S. J.
DeCamp
,
M.
Heymann
, and
Z.
Dogic
, “
Spontaneous motion in hierarchically assembled active matter
,”
Nature
491
,
431
(
2012
).
5.
N.
Kumar
,
R.
Zhang
,
J. J.
de Pablo
, and
M. L.
Gardel
, “
Tunable structure and dynamics of active liquid crystals
,”
Sci. Adv.
4
,
eaat7779
(
2018
).
6.
A.
Doostmohammadi
,
J.
Ignés-Mullol
,
J. M.
Yeomans
, and
F.
Sagués
, “
Active nematics
,”
Nat. Commun.
9
,
3246
(
2018
).
7.
K. L.
Weirich
,
S.
Banerjee
,
K.
Dasbiswas
,
T. A.
Witten
,
S.
Vaikuntanathan
, and
M. L.
Gardel
, “
Liquid behavior of cross-linked actin bundles
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
2131
2136
(
2017
).
8.
K. L.
Weirich
,
K.
Dasbiswas
,
T. A.
Witten
,
S.
Vaikuntanathan
, and
M. L.
Gardel
, “
Self-organizing motors divide active liquid droplets
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
11125
11130
(
2019
).
9.
M. S.
e Silva
,
M.
Depken
,
B.
Stuhrmann
,
M.
Korsten
,
F. C.
MacKintosh
, and
G. H.
Koenderink
, “
Active multistage coarsening of actin networks driven by myosin motors
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
9408
9413
(
2011
).
10.
S.
Stam
,
S. L.
Freedman
,
S.
Banerjee
,
K. L.
Weirich
,
A. R.
Dinner
, and
M. L.
Gardel
, “
Filament rigidity and connectivity tune the deformation modes of active biopolymer networks
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
E10037
E10045
(
2017
).
11.
P.-G.
De Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
(
Oxford University Press
,
1995
), Vol. 83.
12.
J. G.
Gay
and
B. J.
Berne
, “
Modification of the overlap potential to mimic a linear site–site potential
,”
J. Chem. Phys.
74
,
3316
3319
(
1981
).
13.
F.
Mondiot
,
X.
Wang
,
J. J.
de Pablo
, and
N. L.
Abbott
, “
Liquid crystal-based emulsions for synthesis of spherical and non-spherical particles with chemical patches
,”
J. Am. Chem. Soc.
135
,
9972
9975
(
2013
).
14.
J. K.
Whitmer
,
X.
Wang
,
F.
Mondiot
,
D. S.
Miller
,
N. L.
Abbott
, and
J. J.
de Pablo
, “
Nematic-field-driven positioning of particles in liquid crystal droplets
,”
Phys. Rev. Lett.
111
,
227801
(
2013
).
15.
X.
Wang
,
D. S.
Miller
,
J. J.
de Pablo
, and
N. L.
Abbott
, “
Reversible switching of liquid crystalline order permits synthesis of homogeneous populations of dipolar patchy microparticles
,”
Adv. Funct. Mater.
24
,
6219
6226
(
2014
).
16.
M.
Rahimi
,
T. F.
Roberts
,
J. C.
Armas-Pérez
,
X.
Wang
,
E.
Bukusoglu
,
N. L.
Abbott
, and
J. J.
de Pablo
, “
Nanoparticle self-assembly at the interface of liquid crystal droplets
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
5297
5302
(
2015
).
17.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
18.
K.
Husain
and
M.
Rao
, “
Emergent structures in an active polar fluid: Dynamics of shape, scattering, and merger
,”
Phys. Rev. Lett.
118
,
078104
(
2017
).
19.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
20.
W. M.
Brown
,
M. K.
Petersen
,
S. J.
Plimpton
, and
G. S.
Grest
, “
Liquid crystal nanodroplets in solution
,”
J. Chem. Phys.
130
,
044901
(
2009
).
21.
E. M.
del Río
and
E.
de Miguel
, “
Computer simulation study of the free surfaces of a liquid crystal model
,”
Phys. Rev. E
55
,
2916
2924
(
1997
).
22.
L. F.
Rull
,
J. M.
Romero-Enrique
, and
A.
Fernandez-Nieves
, “
Computer simulations of nematic drops: Coupling between drop shape and nematic order
,”
J. Chem. Phys.
137
,
034505
(
2012
).
23.
D.
Vanzo
,
M.
Ricci
,
R.
Berardi
, and
C.
Zannoni
, “
Shape, chirality and internal order of freely suspended nematic nanodroplets
,”
Soft Matter
8
,
11790
11800
(
2012
).
24.
M.
Ravnik
and
S.
Žumer
, “
Landau–de gennes modelling of nematic liquid crystal colloids
,”
Liq. Cryst.
36
,
1201
1214
(
2009
).
25.
P.
Prinsen
and
P.
van der Schoot
, “
Shape and director-field transformation of tactoids
,”
Phys. Rev. E
68
,
021701
(
2003
).
26.
J. C.
Everts
,
M. T. J. J. M.
Punter
,
S.
Samin
,
P.
van der Schoot
, and
R.
van Roij
, “
A landau-de gennes theory for hard colloidal rods: Defects and tactoids
,”
J. Chem. Phys.
144
,
194901
(
2016
).
27.
H.
Löwen
, “
A phase-field-crystal model for liquid crystals
,”
J. Phys.: Condens. Matter
22
,
364105
(
2010
).
28.
R.
Wittkowski
,
H.
Löwen
, and
H. R.
Brand
, “
Microscopic and macroscopic theories for the dynamics of polar liquid crystals
,”
Phys. Rev. E
84
,
041708
(
2011
).
29.
T. C.
Lubensky
,
D.
Pettey
,
N.
Currier
, and
H.
Stark
, “
Topological defects and interactions in nematic emulsions
,”
Phys. Rev. E
57
,
610
625
(
1998
).
30.
R. M. W.
van Bijnen
,
R. H. J.
Otten
, and
P.
van der Schoot
, “
Texture and shape of two-dimensional domains of nematic liquid crystals
,”
Phys. Rev. E
86
,
051703
(
2012
).
31.
G. R.
Dennis
,
J. J.
Hope
, and
M. T.
Johnsson
, “
Xmds2: Fast, scalable simulation of coupled stochastic partial differential equations
,”
Comput. Phys. Commun.
184
,
201
208
(
2013
).
32.
A.
Rapini
and
M.
Papoular
, “
Distorsion d’une lamelle nématique sous champ magnétique conditions d’ancrage aux parois
,”
J. Phys. Colloq.
30
,
C4-54
C4-56
(
1969
).
33.
M.
Nobili
and
G.
Durand
, “
Disorientation-induced disordering at a nematic-liquid-crystal–solid interface
,”
Phys. Rev. A
46
,
R6174
R6177
(
1992
).
34.
M.
Dijkstra
,
R.
van Roij
, and
R.
Evans
, “
Wetting and capillary nematization of a hard-rod fluid: A simulation study
,”
Phys. Rev. E
63
,
051703
(
2001
).
35.
J.-i.
Fukuda
,
H.
Stark
, and
H.
Yokoyama
, “
Wetting of a spherical particle by a nematic liquid crystal
,”
Phys. Rev. E
69
,
021714
(
2004
).
36.
N. M.
Silvestre
,
P.
Patrício
,
M.
Tasinkevych
,
D.
Andrienko
, and
M. M. T.
da Gama
, “
Colloidal discs in nematic liquid crystals
,”
J. Phys.: Condens. Matter
16
,
S1921
S1930
(
2004
).
37.
M.
Leoni
,
O. V.
Manyuhina
,
M. J.
Bowick
, and
M. C.
Marchetti
, “
Defect driven shapes in nematic droplets: Analogies with cell division
,”
Soft Matter
13
,
1257
1266
(
2017
).
38.
A. V.
Kaznacheev
,
M. M.
Bogdanov
, and
S. A.
Taraskin
, “
The nature of prolate shape of tactoids in lyotropic inorganic liquid crystals
,”
J. Exp. Theor. Phys.
95
,
57
63
(
2002
).
39.
P. V.
Dolganov
,
H. T.
Nguyen
,
G.
Joly
,
V. K.
Dolganov
, and
P.
Cluzeau
, “
Shape of nematic droplets in smectic membranes
,”
Europhys. Lett.
78
,
66001
(
2007
).
40.
P. W.
Oakes
,
J.
Viamontes
, and
J. X.
Tang
, “
Growth of tactoidal droplets during the first-order isotropic to nematic phase transition of f-actin
,”
Phys. Rev. E
75
,
061902
(
2007
).
41.
N.
Puech
,
E.
Grelet
,
P.
Poulin
,
C.
Blanc
, and
P.
van der Schoot
, “
Nematic droplets in aqueous dispersions of carbon nanotubes
,”
Phys. Rev. E
82
,
020702
(
2010
).
42.
L.
Tortora
and
O. D.
Lavrentovich
, “
Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
5163
5168
(
2011
).
43.
P. C.
Mushenheim
,
J. S.
Pendery
,
D. B.
Weibel
,
S. E.
Spagnolie
, and
N. L.
Abbott
, “
Straining soft colloids in aqueous nematic liquid crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
5564
5569
(
2016
).
44.
L.
Metselaar
,
I.
Dozov
,
K.
Antonova
,
E.
Belamie
,
P.
Davidson
,
J. M.
Yeomans
, and
A.
Doostmohammadi
, “
Electric-field-induced shape transition of nematic tactoids
,”
Phys. Rev. E
96
,
022706
(
2017
).
45.
G.
Nyström
and
R.
Mezzenga
, “
Liquid crystalline filamentous biological colloids: Analogies and differences
,”
Curr. Opin. Colloid Interface Sci.
38
,
30
44
(
2018
).
46.
Y.
Trukhina
,
S.
Jungblut
,
P.
van der Schoot
, and
T.
Schilling
, “
Osmotic compression of droplets of hard rods: A computer simulation study
,”
J. Chem. Phys.
130
,
164513
(
2009
).
47.
A.
DeBenedictis
and
T. J.
Atherton
, “
Shape minimisation problems in liquid crystals
,”
Liq. Cryst.
43
,
2352
2362
(
2016
).
48.
P.
Prinsen
and
P.
van der Schoot
, “
Continuous director-field transformation of nematic tactoids
,”
Eur. Phys. J. E
13
,
35
41
(
2004
).
49.
J.
Moreno-Razo
,
E.
Sambriski
,
N.
Abbott
,
J.
Hernández-Ortiz
, and
J.
De Pablo
, “
Liquid-crystal-mediated self-assembly at nanodroplet interfaces
,”
Nature
485
,
86
(
2012
).
50.
Y.
Luo
,
D. A.
Beller
,
G.
Boniello
,
F.
Serra
, and
K. J.
Stebe
, “
Tunable colloid trajectories in nematic liquid crystals near wavy walls
,”
Nat. Commun.
9
,
3841
(
2018
).
51.
I. B.
Liu
,
N.
Sharifi-Mood
, and
K. J.
Stebe
, “
Capillary assembly of colloids: Interactions on planar and curved interfaces
,”
Annu. Rev. Condens. Matter Phys.
9
,
283
305
(
2018
).
52.
A.
Humpert
,
S. F.
Brown
, and
M. P.
Allen
, “
Molecular simulations of entangled defect structures around nanoparticles in nematic liquid crystals
,”
Liq. Cryst.
45
,
59
69
(
2018
).
You do not currently have access to this content.