Plasmonic metal nanoparticles (NPs) represent a promising class of photocatalysts to drive chemical transformations by the photoexcited hot electrons in the NPs. In this work, the dependence of photon-to-chemical conversion efficiency on the size of plasmonic silver nanoparticles (Ag NPs) has been comprehensively studied with the use of the photocatalytic degradation of methylene blue as a probe reaction. Comparison of Ag NPs with two different sizes (6 nm and 13 nm in diameter) highlights that the smaller sized Ag NPs favor the photocatalytic activity by positively translating the high efficiency of hot electron generation to the hot-electron-driven chemical reaction on the surface of the Ag NPs. Loading the small Ag NPs to the dielectric silica nanospheres (SiOX NSs, average diameter of 400 nm) with high surface coverage increases the light absorption power in the Ag NPs due to the surface light scattering resonances of the SiOX NSs and interparticle plasmon coupling of the adjacent Ag NPs. The enhanced light absorption can also be rendered to the improved photocatalytic activity. This design principle of plasmonic photocatalysts provides a promise of utilizing solar energy to drive desirable chemical reactions with high photon-to-chemical conversion efficiency.

1.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
John Wiley & Sons
,
2008
).
2.
K. A.
Willets
and
R. P.
Van Duyne
,
Annu. Rev. Phys. Chem.
58
,
267
297
(
2007
).
3.
K. L.
Kelly
,
E.
Coronado
,
L. L.
Zhao
, and
G. C.
Schatz
,
J. Phys. Chem. B
107
,
668
677
(
2003
).
4.
P.
Narang
,
R.
Sundararaman
, and
H. A.
Atwater
,
Nanophotonics
5
,
96
111
(
2016
).
5.
J.-J.
Chen
,
J. C. S.
Wu
,
P. C.
Wu
, and
D. P.
Tsai
,
J. Phys. Chem. C
115
,
210
216
(
2011
).
6.
Z.
Liu
,
W.
Hou
,
P.
Pavaskar
,
M.
Aykol
, and
S. B.
Cronin
,
Nano Lett.
11
,
1111
1116
(
2011
).
7.
D. B.
Ingram
and
S.
Linic
,
J. Am. Chem. Soc.
133
,
5202
5205
(
2011
).
8.
J.
Lee
,
S.
Mubeen
,
X.
Ji
,
G. D.
Stucky
, and
M.
Moskovits
,
Nano Lett.
12
,
5014
5019
(
2012
).
9.
S.
Yu
,
A. J.
Wilson
,
J.
Heo
, and
P. K.
Jain
,
Nano Lett.
18
,
2189
2194
(
2018
).
10.
G.
Kumari
,
X.
Zhang
,
D.
Devasia
,
J.
Heo
, and
P. K.
Jain
,
ACS Nano
12
,
8330
8340
(
2018
).
11.
X.
Zhang
,
X.
Li
,
D.
Zhang
,
N. Q.
Su
,
W.
Yang
,
H. O.
Everitt
, and
J.
Liu
,
Nat. Commun.
8
,
14542
(
2017
).
12.
J.
Ding
,
Y.
Bu
,
M.
Ou
,
Y.
Yu
,
Q.
Zhong
, and
M.
Fan
,
Appl. Catal. B: Environ.
202
,
314
325
(
2017
).
13.
S.
Mukherjee
,
F.
Libisch
,
N.
Large
,
O.
Neumann
,
L. V.
Brown
,
J.
Cheng
,
J. B.
Lassiter
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
,
Nano Lett.
13
,
240
247
(
2013
).
14.
S.
Mukherjee
,
L.
Zhou
,
A. M.
Goodman
,
N.
Large
,
C.
Ayala-Orozco
,
Y.
Zhang
,
P.
Nordlander
, and
N. J.
Halas
,
J. Am. Chem. Soc.
136
,
64
67
(
2014
).
15.
P.
Christopher
,
H.
Xin
, and
S.
Linic
,
Nat. Chem.
3
,
467
(
2011
).
16.
P.
Christopher
,
H.
Xin
,
A.
Marimuthu
, and
S.
Linic
,
Nat. Mater.
11
,
1044
(
2012
).
17.
Z. C.
Wu
,
Y.
Zhang
,
T. X.
Tao
,
L.
Zhang
, and
H.
Fong
,
Appl. Surf. Sci.
257
,
1092
1097
(
2010
).
18.
S.
Sun
,
W.
Wang
,
L.
Zhang
,
M.
Shang
, and
L.
Wang
,
Catal. Commun.
11
,
290
293
(
2009
).
19.
K.-H.
Chen
,
Y.-C.
Pu
,
K.-D.
Chang
,
Y.-F.
Liang
,
C.-M.
Liu
,
J.-W.
Yeh
,
H.-C.
Shih
, and
Y.-J.
Hsu
,
J. Phys. Chem. C
116
,
19039
19045
(
2012
).
20.
M.
Misra
,
N.
Singh
, and
R. K.
Gupta
,
Catal. Sci. Technol.
7
,
570
580
(
2017
).
21.
J.
Huang
,
W.
Guo
,
Y.
Hu
, and
W. D.
Wei
,
MRS Bull.
45
,
37
42
(
2020
).
22.
S.
Yu
,
V.
Mohan
, and
P. K.
Jain
,
MRS Bull.
45
,
43
48
(
2020
).
23.
M. J.
Kale
,
T.
Avanesian
, and
P.
Christopher
,
ACS Catal.
4
,
116
128
(
2014
).
24.
S.
Linic
,
P.
Christopher
, and
D. B.
Ingram
,
Nat. Mater.
10
,
911
(
2011
).
25.
Y.
Zhang
,
S.
He
,
W.
Guo
,
Y.
Hu
,
J.
Huang
,
J. R.
Mulcahy
, and
W. D.
Wei
,
Chem. Rev.
118
,
2927
2954
(
2018
).
26.
G. V.
Hartland
,
L. V.
Besteiro
,
P.
Johns
, and
A. O.
Govorov
,
ACS Energy Lett.
2
,
1641
1653
(
2017
).
27.
L.
Zhou
,
D. F.
Swearer
,
C.
Zhang
,
H.
Robatjazi
,
H.
Zhao
,
L.
Henderson
,
L.
Dong
,
P.
Christopher
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
,
Science
362
,
69
72
(
2018
).
28.
X.
Zhang
,
X.
Li
,
M. E.
Reish
,
D.
Zhang
,
N. Q.
Su
,
Y.
Gutiérrez
,
F.
Moreno
,
W.
Yang
,
H. O.
Everitt
, and
J.
Liu
,
Nano Lett.
18
,
1714
1723
(
2018
).
29.
J.
Zhang
,
X.
Jin
,
P. I.
Morales-Guzman
,
X.
Yu
,
H.
Liu
,
H.
Zhang
,
L.
Razzari
, and
J. P.
Claverie
,
ACS Nano
10
,
4496
4503
(
2016
).
30.
N.
Zhang
,
C.
Han
,
Y.-J.
Xu
,
J. J.
Foley Iv
,
D.
Zhang
,
J.
Codrington
,
S. K.
Gray
, and
Y.
Sun
,
Nat. Photonics
10
,
473
(
2016
).
31.
K. D.
Rasamani
,
J. J.
Foley
,
B.
Beidelman
, and
Y.
Sun
,
Nano Res.
10
,
1292
1301
(
2017
).
32.
K. D.
Rasamani
,
J. J.
Foley
, and
Y.
Sun
,
Nano Futures
2
,
015003
(
2018
).
33.
X.
Dai
,
K. D.
Rasamani
,
G.
Hall
,
R.
Makrypodi
, and
Y.
Sun
,
Front. Chem.
6
,
494
(
2018
).
34.
X.
Dai
,
K. D.
Rasamani
,
S.
Wu
, and
Y.
Sun
,
Mater. Today Energy
10
,
15
22
(
2018
).
35.
X.
Dai
,
Q.
Wei
,
T.
Duong
, and
Y.
Sun
,
ChemNanoMat
5
,
1000
1007
(
2019
).
36.
W.
Stöber
,
A.
Fink
, and
E. J.
Bohn
,
Colloid Interface Sci.
26
,
62
69
(
1968
).
37.
J. H.
Zhang
,
P.
Zhan
,
Z. L.
Wang
,
W. Y.
Zhang
, and
N. B.
Ming
,
J. Mater. Res.
18
,
649
653
(
2003
).
38.
M. M.
Rahman
,
H.
Younes
,
J. Y.
Lu
,
G.
Ni
,
S.
Yuan
,
N. X.
Fang
,
T.
Zhang
, and
A.
Al Ghaferi
,
RSC Adv.
6
,
107951
107959
(
2016
).
39.
P.
Reineck
,
D.
Brick
,
P.
Mulvaney
, and
U.
Bach
,
J. Phys. Chem. Lett.
7
,
4137
4141
(
2016
).
40.
Q.
Wei
,
S.
Wu
, and
Y.
Sun
,
Adv. Mater.
30
,
1802082
(
2018
).
41.
Y.
Sun
and
Z.
Tang
,
MRS Bull.
45
,
20
25
(
2020
).

Supplementary Material

You do not currently have access to this content.