To understand the origins of failure and limited cycle life in lithium-ion batteries (LIBs), it is imperative to quantitatively link capacity-fading mechanisms to electrochemical and chemical processes. This is extremely challenging in real systems where capacity is lost during each cycle to both active material loss and solid electrolyte interphase (SEI) evolution, two indistinguishable contributions in traditional electrochemical measurements. Here, we have used a model system in combination with (1) precision measurements of the overall Coulombic efficiency via electrochemical experiments and (2) x-ray reflectivity measurements of the active material losses. The model system consisted of a 515 Å thick amorphous silicon (a-Si) thin film on silicon carbide in half-cell geometry using a carbonate electrolyte with LiPF6 salt. This approach allowed us to quantify the capacity lost during each cycle due to SEI evolution. Combined with electrochemical analysis, we identify SEI growth as the major contribution to capacity fading. Specifically, the continued SEI growth results in increasing overpotentials due to increased SEI resistance, and this leads to lower extent of lithiation when the cutoff voltage is reached during lithiation. Our results suggest that SEI grows more with increased time spent at low voltages where electrolyte decomposition is favored. Finally, we extracted a proportionality constant for SEI growth following a parabolic growth law. Our methodology allows for the quantitative determination of lithium-ion loss mechanisms in LIBs by separately tracking lithium ions within the active materials and the SEI and offers a powerful method of quantitatively understanding LIB loss mechanisms.

1.
S.
Chu
,
Y.
Cui
, and
N.
Liu
,
Nat. Mater.
16
(
1
),
16
22
(
2016
).
2.
J. B.
Goodenough
and
K. S.
Park
,
J. Am. Chem. Soc.
135
(
4
),
1167
1176
(
2013
).
3.
B.
Dunn
,
H.
Kamath
, and
J.-M.
Tarascon
,
Science
334
(
6058
),
928
935
(
2011
).
4.
M. N.
Obrovac
and
L.
Christensen
,
Electrochem. Solid-State Lett.
7
(
5
),
A93
(
2004
).
5.
J.
Li
and
J. R.
Dahn
,
J. Electrochem. Soc.
154
(
3
),
A156
(
2007
).
6.
W.-F.
Ren
,
Y.
Zhou
,
J.-T.
Li
,
L.
Huang
, and
S.-G.
Sun
,
Curr. Opin. Electrochem.
18
,
46
54
(
2019
).
7.
S.
Misra
,
N.
Liu
,
J.
Nelson
,
S. S.
Hong
,
Y.
Cui
, and
M. F.
Toney
,
ACS Nano
6
(
6
),
5465
5473
(
2012
).
8.
J.
Zhao
,
Z.
Lu
,
H.
Wang
,
W.
Liu
,
H.-W.
Lee
,
K.
Yan
,
D.
Zhuo
,
D.
Lin
,
N.
Liu
, and
Y.
Cui
,
J. Am. Chem. Soc.
137
(
26
),
8372
8375
(
2015
).
9.
M.
Ashuri
,
Q.
He
, and
L. L.
Shaw
,
Nanoscale
8
,
74
103
(
2016
).
10.
X.
Zuo
,
J.
Zhu
,
P.
Müller-Buschbaum
, and
Y.-J.
Cheng
,
Nano Energy
31
,
113
143
(
2017
).
11.
U.
Kasavajjula
,
C.
Wang
, and
A. J.
Appleby
,
J. Power Sources
163
(
2
),
1003
1039
(
2007
).
12.
O.
Borodin
,
X.
Ren
,
J.
Vatamanu
,
A.
von Wald Cresce
,
J.
Knap
, and
K.
Xu
,
Acc. Chem. Res.
50
(
12
),
2886
2894
(
2017
).
13.
P.
Peljo
and
H. H.
Girault
,
Energy Environ. Sci.
11
(
9
),
2306
2309
(
2018
).
14.
F.
Shi
and
P. N.
Ross
,
Encyclopedia of Inorganic and Bioinorganic Chemistry
(
John Wiley & Sons, Ltd.
,
2019
), pp.
1
17
.
15.
X.
Tang
,
C.
Wang
,
F.
Zhang
,
Q.
Wang
,
J.
Wang
,
S.
Seifert
, and
R. E.
Winans
,
Combust. Flame
206
,
390
399
(
2019
).
16.
J. B.
Goodenough
and
Y.
Kim
,
Chem. Mater.
22
(
3
),
587
603
(
2010
).
17.
C.
Stetson
,
Y.
Yin
,
C. S.
Jiang
,
S. C.
Decaluwe
,
M.
Al-Jassim
,
N. R.
Neale
,
C.
Ban
, and
A.
Burrell
,
ACS Energy Lett.
4
,
2770
2775
(
2019
).
18.
H.
Wu
,
G.
Chan
,
J. W.
Choi
,
I.
Ryu
,
Y.
Yao
,
M. T.
McDowell
,
S. W.
Lee
,
A.
Jackson
,
Y.
Yang
,
L.
Hu
, and
Y.
Cui
,
Nat. Nanotechnol.
7
(
5
),
310
315
(
2012
).
19.
A.
Tomaszewska
,
Z.
Chu
,
X.
Feng
,
S.
O’Kane
,
X.
Liu
,
J.
Chen
,
C.
Ji
,
E.
Endler
,
R.
Li
,
L.
Liu
,
Y.
Li
,
S.
Zheng
,
S.
Vetterlein
,
M.
Gao
,
J.
Du
,
M.
Parkes
,
M.
Ouyang
,
M.
Marinescu
,
G.
Offer
, and
B.
Wu
,
eTransportation
1
,
100011
(
2019
).
20.
Q.
Wu
,
B.
Shi
,
J.
Bareno
,
Y.
Liu
,
V. A.
Maroni
,
D.
Zhai
,
D. W.
Dees
, and
W.
Lu
,
ACS Appl. Mater. Interfaces
10
(
4
),
3487
3494
(
2018
).
21.
M. J.
Chon
,
V. A.
Sethuraman
,
A.
McCormick
,
V.
Srinivasan
, and
P. R.
Guduru
,
Phys. Rev. Lett.
107
,
045503
(
2011
).
22.
I.
Yoon
,
S.
Jurng
,
D. P.
Abraham
,
B. L.
Lucht
, and
P. R.
Guduru
,
Energy Storage Mater.
25
,
296
(
2019
).
23.
S. P. V.
Nadimpalli
,
V. A.
Sethuraman
,
S.
Dalavi
,
B.
Lucht
,
M. J.
Chon
,
V. B.
Shenoy
, and
P. R.
Guduru
,
J. Power Sources
215
,
145
151
(
2012
).
24.
V. L.
Chevrier
and
J. R.
Dahn
,
J. Electrochem. Soc.
156
(
6
),
A454
A458
(
2009
).
25.
J.
Graetz
,
C.
Ahn
,
R.
Yazami
, and
B.
Fultz
,
Electrochem. Solid-State Lett.
6
(
9
),
A194
A197
(
2003
).
26.
B.
Jerliu
,
E.
Hüger
,
L.
Dörrer
,
B. K.
Seidlhofer
,
R.
Steitz
,
V.
Oberst
,
U.
Geckle
,
M.
Bruns
, and
H.
Schmidt
,
J. Phys. Chem. C
118
(
18
),
9395
9399
(
2014
).
27.
D.
Uxa
,
B.
Jerliu
,
E.
Hüger
,
L.
Dörrer
,
M.
Horisberger
,
J.
Stahn
, and
H.
Schmidt
,
J. Phys. Chem. C
123
(
36
),
22027
22039
(
2019
).
28.
S. C.
DeCaluwe
,
B. M.
Dhar
,
L.
Huang
,
Y.
He
,
K.
Yang
,
J. P.
Owejan
,
Y.
Zhao
,
A. A.
Talin
,
J. A.
Dura
, and
H.
Wang
,
Phys. Chem. Chem. Phys.
17
(
17
),
11301
11312
(
2015
).
29.
T. M.
Fears
,
M.
Doucet
,
J. F.
Browning
,
J. K.
Baldwin
,
J. G.
Winiarz
,
H.
Kaiser
,
H.
Taub
,
R. L.
Sacci
, and
G. M.
Veith
,
Phys. Chem. Chem. Phys.
18
(
20
),
13927
13940
(
2016
).
30.
G. M.
Veith
,
M.
Doucet
,
R. L.
Sacci
,
B.
Vacaliuc
,
J. K.
Baldwin
, and
J. F.
Browning
,
Sci. Rep.
7
(
1
),
6326
(
2017
).
31.
G. M.
Veith
,
M.
Doucet
,
J. K.
Baldwin
,
R. L.
Sacci
,
T. M.
Fears
,
Y.
Wang
, and
J. F.
Browning
,
J. Phys. Chem. C
119
(
35
),
20339
20349
(
2015
).
32.
K. L.
Browning
,
J. F.
Browning
,
M.
Doucet
,
N. L.
Yamada
,
G.
Liu
, and
G. M.
Veith
,
Phys. Chem. Chem. Phys.
21
(
31
),
17356
17365
(
2019
).
33.
J. E.
Owejan
,
J. P.
Owejan
,
S. C.
DeCaluwe
, and
J. A.
Dura
,
Chem. Mater.
24
(
11
),
2133
2140
(
2012
).
34.
E. D.
Rus
and
J. A.
Dura
,
ACS Appl. Mater. Interfaces
11
,
47553
(
2019
).
35.
C.
Cao
,
H.-G.
Steinrück
,
B.
Shyam
, and
M. F.
Toney
,
Adv. Mater. Interfaces
4
,
1700771
(
2017
).
36.
C.
Cao
,
H. G.
Steinrück
,
B.
Shyam
,
K. H.
Stone
, and
M. F.
Toney
,
Nano Lett.
16
(
12
),
7394
7401
(
2016
).
37.
C.
Cao
,
B.
Shyam
,
J.
Wang
,
M. F.
Toney
, and
H. G.
Steinruck
,
Acc. Chem. Res.
52
(
9
),
2673
2683
(
2019
).
38.
B.
Philippe
,
R.
Dedryvère
,
J.
Allouche
,
F.
Lindgren
,
M.
Gorgoi
,
H.
Rensmo
,
D.
Gonbeau
, and
K.
Edström
,
Chem. Mater.
24
(
6
),
1107
1115
(
2012
).
39.
B.
Philippe
,
R.
Dedryvere
,
M.
Gorgoi
,
H.
Rensmo
,
D.
Gonbeau
, and
K.
Edstrom
,
J. Am. Chem. Soc.
135
(
26
),
9829
9842
(
2013
).
40.
E.
Radvanyi
,
E.
De Vito
,
W.
Porcher
, and
S.
Jouanneau Si Larbi
,
J. Anal. At. Spectrom.
29
(
6
),
1120
1131
(
2014
).
41.
B. T.
Young
,
D. R.
Heskett
,
C. C.
Nguyen
,
M.
Nie
,
J. C.
Woicik
, and
B. L.
Lucht
,
ACS Appl. Mater. Interfaces
7
(
36
),
20004
20011
(
2015
).
42.
C.
Cao
,
I. I.
Abate
,
E.
Sivonxay
,
B.
Shyam
,
C.
Jia
,
B.
Moritz
,
T. P.
Devereaux
,
K. A.
Persson
,
H.-G.
Steinrück
, and
M. F.
Toney
,
Joule
3
(
3
),
762
781
(
2019
).
43.
Y.
Horowitz
,
H. L.
Han
,
P. N.
Ross
, and
G. A.
Somorjai
,
J. Am. Chem. Soc.
138
(
3
),
726
729
(
2016
).
44.
C.
Stetson
,
T.
Yoon
,
J.
Coyle
,
W.
Nemeth
,
M.
Young
,
A.
Norman
,
S.
Pylypenko
,
C.
Ban
,
C.-S.
Jiang
,
M.
Al-Jassim
, and
A.
Burrell
,
Nano Energy
55
,
477
485
(
2019
).
45.
H.-G.
Steinrück
,
C.
Cao
,
Y.
Tsao
,
C. J.
Takacs
,
O.
Konovalov
,
J.
Vatamanu
,
O.
Borodin
, and
M. F.
Toney
,
Energy Environ. Sci.
11
,
594
(
2018
).
46.
G.
Evmenenko
,
R. E.
Warburton
,
H.
Yildirim
,
J. P.
Greeley
,
M. K. Y.
Chan
,
D. B.
Buchholz
,
P.
Fenter
,
M. J.
Bedzyk
, and
T. T.
Fister
,
ACS Nano
13
(
7
),
7825
7832
(
2019
).
47.
X.
Chen
,
M.
Vörös
,
J. C.
Garcia
,
T. T.
Fister
,
D. B.
Buchholz
,
J.
Franklin
,
Y.
Du
,
T. C.
Droubay
,
Z.
Feng
,
H.
Iddir
,
L. A.
Curtiss
,
M. J.
Bedzyk
, and
P.
Fenter
,
ACS Appl. Energy Mater.
1
(
6
),
2526
2535
(
2018
).
48.
X.
Chen
,
T. T.
Fister
,
J.
Esbenshade
,
B.
Shi
,
X.
Hu
,
J.
Wu
,
A. A.
Gewirth
,
M. J.
Bedzyk
, and
P.
Fenter
,
ACS Appl. Mater. Interfaces
9
(
9
),
8169
8176
(
2017
).
49.
A. L.
Lipson
,
S.
Chattopadhyay
,
H. J.
Karmel
,
T. T.
Fister
,
J. D.
Emery
,
V. P.
Dravid
,
M. M.
Thackeray
,
P. A.
Fenter
,
M. J.
Bedzyk
, and
M. C.
Hersam
,
J. Phys. Chem. C
116
(
39
),
20949
20957
(
2012
).
50.
Y. W.
Chen
,
J. D.
Prange
,
S.
Duhnen
,
Y.
Park
,
M.
Gunji
,
C. E.
Chidsey
, and
P. C.
McIntyre
,
Nat. Mater.
10
(
7
),
539
544
(
2011
).
51.
P. F.
Satterthwaite
,
A. G.
Scheuermann
,
P. K.
Hurley
,
C. E.
Chidsey
, and
P. C.
McIntyre
,
ACS Appl. Mater. Interfaces
8
(
20
),
13140
13149
(
2016
).
52.
S. Y.
Sayed
,
W. P.
Kalisvaart
,
B. C.
Olsen
,
E. J.
Luber
,
H.
Xie
, and
J. M.
Buriak
,
Chem. Mater.
31
(
17
),
6578
6589
(
2019
).
53.
P. S.
Pershan
and
M.
Schlossman
,
Liquid Surfaces and Interfaces: Synchrotron X-Ray Methods
(
Cambridge University Press
,
2012
).
54.
J.
Daillant
and
A.
Gibaud
,
X-Ray and Neutron Reflectivity: Principles and Applications
(
Springer
,
2008
).
55.
J.
Als-Nielsen
and
D.
McMorrow
,
Elements of Modern X-ray Physics
(
Wiley
,
New York
,
2001
).
56.
M.
Tolan
,
X-Ray Scattering from Soft-Matter Thin Films
(
Springer
,
1999
).
57.
M.
Deutsch
and
B.
Ocko
, in
Encyclopedia of Applied Physics
, edited by
G. L.
Trigg
(
VCH
,
New York
,
1998
), Vol. 23, pp.
479
490
.
58.
M.
Sanyal
,
S.
Sinha
,
A.
Gibaud
,
S.
Satija
,
C.
Majkrzak
, and
H.
Homa
, in
Surface X-Ray and Neutron Scattering
, edited by
H.
Zabel
and
I. K.
Robinson
(
Springer
,
Berlin, Heidelberg
,
1992
), pp.
91
94
.
59.
T.
Hohage
,
K.
Giewekemeyer
, and
T.
Salditt
,
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
77
(
5 Pt 1
),
051604
(
2008
).
60.
O.
Seeck
,
I.
Kaendler
,
M.
Tolan
,
K.
Shin
,
M.
Rafailovich
,
J.
Sokolov
, and
R.
Kolb
,
Appl. Phys. Lett.
76
(
19
),
2713
2715
(
2000
).
61.
K.
Sakurai
,
M.
Mizusawa
, and
M.
Ishii
,
Trans. Mater. Res. Soc. Jpn.
33
(
3
),
523
528
(
2008
).
62.
G.
Vignaud
,
A.
Gibaud
,
G.
Grübel
,
S.
Joly
,
D.
Ausserre
,
J.
Legrand
, and
Y.
Gallot
,
Physica B
248
(
1-4
),
250
257
(
1998
).
63.
L.
Beaulieu
,
T.
Hatchard
,
A.
Bonakdarpour
,
M.
Fleischauer
, and
J.
Dahn
,
J. Electrochem. Soc.
150
(
11
),
A1457
A1464
(
2003
).
64.
M. T.
McDowell
,
S. W.
Lee
,
J. T.
Harris
,
B. A.
Korgel
,
C.
Wang
,
W. D.
Nix
, and
Y.
Cui
,
Nano Lett.
13
(
2
),
758
764
(
2013
).
65.
A. J.
Smith
,
J. C.
Burns
,
X.
Zhao
,
D.
Xiong
, and
J. R.
Dahn
,
J. Electrochem. Soc.
158
(
5
),
A447
A452
(
2011
).
66.
T. R.
Tanim
,
E. J.
Dufek
,
M.
Evans
,
C.
Dickerson
,
A. N.
Jansen
,
B. J.
Polzin
,
A. R.
Dunlop
,
S. E.
Trask
,
R.
Jackman
,
I.
Bloom
,
Z.
Yang
, and
E.
Lee
,
J. Electrochem. Soc.
166
(
10
),
A1926
A1938
(
2019
).
67.
L.
Pfaffmann
,
C.
Birkenmaier
,
M.
Müller
,
W.
Bauer
,
T.
Mitsch
,
J.
Feinauer
,
Y.
Krämer
,
F.
Scheiba
,
A.
Hintennach
,
T.
Schleid
,
V.
Schmidt
, and
H.
Ehrenberg
,
J. Power Sources
307
,
762
771
(
2016
).
68.
K.
Zaghib
,
G.
Nadeau
, and
K.
Kinoshita
,
J. Electrochem. Soc.
147
(
6
),
2110
2115
(
2000
).
69.
J. E.
Harlow
,
D. A.
Stevens
,
J. C.
Burns
,
J. N.
Reimers
, and
J. R.
Dahn
,
J. Electrochem. Soc.
160
(
11
),
A2306
A2310
(
2013
).
70.
P.
Trogadas
,
O. O.
Taiwo
,
B.
Tjaden
,
T. P.
Neville
,
S.
Yun
,
J.
Parrondo
,
V.
Ramani
,
M.-O.
Coppens
,
D. J. L.
Brett
, and
P. R.
Shearing
,
Electrochem. Commun.
48
,
155
159
(
2014
).
71.
B.
Gyenes
,
D. A.
Stevens
,
V. L.
Chevrier
, and
J. R.
Dahn
,
J. Electrochem. Soc.
162
(
3
),
A278
A283
(
2014
).
72.
L.
Wang
,
A.
Menakath
,
F.
Han
,
Y.
Wang
,
P. Y.
Zavalij
,
K. J.
Gaskell
,
O.
Borodin
,
D.
Iuga
,
S. P.
Brown
,
C.
Wang
,
K.
Xu
, and
B. W.
Eichhorn
,
Nat. Chem.
11
(
9
),
789
796
(
2019
).
73.
K.
Xu
,
Chem. Rev.
114
(
23
),
11503
11618
(
2014
).
74.
P.
Verma
,
P.
Maire
, and
P.
Novák
,
Electrochim. Acta
55
(
22
),
6332
6341
(
2010
).
75.
K. W.
Schroder
,
A. G.
Dylla
,
S. J.
Harris
,
L. J.
Webb
, and
K. J.
Stevenson
,
ACS Appl. Mater. Interfaces
6
(
23
),
21510
21524
(
2014
).
76.
J.
Zheng
,
H.
Zheng
,
R.
Wang
,
L.
Ben
,
W.
Lu
,
L.
Chen
,
L.
Chen
, and
H.
Li
,
Phys. Chem. Chem. Phys.
16
(
26
),
13229
13238
(
2014
).
77.
T.
Oi
,
Mater. Res. Bull.
19
(
4
),
451
457
(
1984
).
78.
S.
Shi
,
P.
Lu
,
Z.
Liu
,
Y.
Qi
,
L. G.
Hector
, Jr.
,
H.
Li
, and
S. J.
Harris
,
J. Am. Chem. Soc.
134
(
37
),
15476
15487
(
2012
).
79.
S.
Shi
,
Y.
Qi
,
H.
Li
, and
L. G.
Hector
,
J. Phys. Chem. C
117
(
17
),
8579
8593
(
2013
).
80.
O.
Borodin
,
G. V.
Zhuang
,
P. N.
Ross
, and
K.
Xu
,
J. Phys. Chem. C
117
(
15
),
7433
7444
(
2013
).
81.
K. R.
Lawless
,
Rep. Prog. Phys.
37
(
2
),
231
(
1974
).
82.
F.
Single
,
B.
Horstmann
, and
A.
Latz
,
Phys. Chem. Chem. Phys.
18
,
17810
17814
(
2016
).
83.
F.
Single
,
A.
Latz
, and
B.
Horstmann
,
ChemSusChem
11
(
12
),
1950
1955
(
2018
).
84.
C. F.
Chen
and
P. P.
Mukherjee
,
Phys. Chem. Chem. Phys.
17
(
15
),
9812
9827
(
2015
).

Supplementary Material

You do not currently have access to this content.