The photochemical dynamics of double-bond-containing hydrocarbons is exemplified by the smallest alkenes, ethylene and butadiene. Chemical substituents can alter both decay timescales and photoproducts through a combination of inertial effects due to substituent mass, steric effects due to substituent size, and electronic (or potential) effects due to perturbative changes to the electronic potential energy surface. Here, we demonstrate the interplay of different substituent effects on 1,3-butadiene and its methylated derivatives using a combination of ab initio simulation of nonadiabatic dynamics and time-resolved photoelectron spectroscopy. The purely inertial effects of methyl substitution are simulated through the use of mass 15 “heavy-hydrogen” atoms. As expected from both inertial and electronic influences, the excited-state dynamics is dominated by pyramidalization at the unsubstituted carbon sites. Although the electronic effects of methyl group substitution are weak, they alter both decay timescales and branching ratios by influencing the initial path taken by the excited wavepacket following photoexcitation.

1.
G.
Gröbner
,
I. J.
Burnett
,
C.
Glaubitz
,
G.
Choi
,
A. J.
Mason
, and
A.
Watts
, “
Observations of light-induced structural changes of retinal within rhodopsin
,”
Nature
405
,
810
813
(
2000
).
2.
D.
Polli
,
P.
Altoe
,
O.
Weingart
,
K. M.
Spillane
,
C.
Manzoni
,
D.
Brida
,
G.
Tomasello
,
G.
Orlandi
,
P.
Kukura
,
R. A.
Mathies
,
M.
Garavelli
, and
G.
Cerullo
, “
Conical intersection dynamics of the primary photoisomerization event in vision
,”
Nature
467
,
440
443
(
2010
).
3.
C.
Punwong
,
J.
Owens
, and
T. J.
Martínez
, “
Direct QM/MM excited-state dynamics of retinal protonated Schiff base in isolation and methanol solution
,”
J. Phys. Chem. B
119
,
704
714
(
2015
).
4.
P.
Nogly
 et al, “
Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser
,”
Science
361
,
eeat0094
(
2018
).
5.
W.
Fuß
,
Y.
Haas
, and
S.
Zilberg
, “
Twin states and conical intersections in linear polyenes
,”
Chem. Phys.
259
,
273
295
(
2000
).
6.
M.
Garavelli
, “
Computational organic photochemistry: Strategy, achievements and perspectives
,”
Theor. Chem. Acc.
116
,
87
105
(
2006
).
7.
M. A.
Watson
and
G. K.-L.
Chan
, “
Excited states of butadiene to chemical accuracy: Reconciling theory and experiment
,”
J. Chem. Theory Comput.
8
,
4013
4018
(
2012
).
8.
D. G.
Leopold
,
R. D.
Pendley
,
J. L.
Roebber
,
R. J.
Hemley
, and
V.
Vaida
, “
Direct absorption spectroscopy of jet-cooled polyenes. II. The 11Bu+11Ag transitions of butadienes and hexatrienes
,”
J. Chem. Phys.
81
,
4218
4229
(
1984
).
9.
G.
Orlandi
,
F.
Zerbetto
, and
M. Z.
Zgierski
, “
Theoretical analysis of spectra of short polyenes
,”
Chem. Rev.
91
,
867
891
(
1991
).
10.
M.
Olivucci
,
I. N.
Ragazos
,
F.
Bernardi
, and
M. A.
Robb
, “
A conical intersection mechanism for the photochemistry of butadiene. A MC-SCF study
,”
J. Am. Chem. Soc.
115
,
3710
3721
(
1993
).
11.
L.
Serrano-Andrís
,
M.
Merchán
,
I.
Nebot-Gil
,
R.
Lindh
, and
B. O.
Roos
, “
Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene
,”
J. Chem. Phys.
98
,
3151
3162
(
1993
).
12.
J. D.
Watts
,
S. R.
Gwaltney
, and
R. J.
Bartlett
, “
Coupled-cluster calculations of the excitation energies of ethylene, butadiene, and cyclopentadiene
,”
J. Chem. Phys.
105
,
6979
6988
(
1996
).
13.
M.
Dallos
and
H.
Lischka
, “
A systematic theoretical investigation of the lowest valence- and Rydberg-excited singlet states of trans-butadiene. The character of the 11Bu (V) state revisited
,”
Theor. Chem. Acc.
112
,
16
26
(
2004
).
14.
B. G.
Levine
and
T. J.
Martínez
, “
Ab initio multiple spawning dynamics of excited butadiene: Role of charge transfer
,”
J. Phys. Chem. A
113
,
12815
12824
(
2009
).
15.
A.
Komainda
,
B.
Ostojić
, and
H.
Köppel
, “
Ab initio quantum study of nonadiabatic S1–S2 photodynamics of s-trans-Butadiene
,”
J. Chem. Phys. A
117
,
8782
8793
(
2013
).
16.
A.
Komainda
,
D.
Lefrancois
,
A.
Dreuw
, and
H.
Köppel
, “
Theoretical study of the initial non-radiative 1 Bu → 2 Ag transition in the fluorescence quenching of s-trans-butadiene: Electronic structure methods and quantum dynamics
,”
Chem. Phys.
482
,
27
38
(
2017
).
17.
A. D.
Chien
,
A. A.
Holmes
,
M.
Otten
,
C. J.
Umrigar
,
S.
Sharma
, and
P. M.
Zimmerman
, “
Excited states of methylene, polyenes, and ozone from heat-bath configuration interaction
,”
J. Phys. Chem. A
122
,
2714
2722
(
2018
).
18.
W. J.
Glover
,
T.
Mori
,
M. S.
Schuurman
,
A. E.
Boguslavskiy
,
O.
Schalk
,
A.
Stolow
, and
T. J.
Martínez
, “
Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. II. Ab initio multiple spawning simulations
,”
J. Chem. Phys.
148
,
164303
(
2018
).
19.
S. M.
Rabidoux
,
R. J.
Cave
, and
J. F.
Stanton
, “
Nonadiabatic investigation of the electronic spectroscopy of trans-1,3-butadiene
,”
J. Phys. Chem. A
123
,
3255
3271
(
2019
).
20.
L. J.
Rothberg
,
D. P.
Gerrity
, and
V.
Vaida
, “
Electronic spectra of butadiene and its methyl derivatives: A multiphoton ionization study
,”
J. Chem. Phys.
73
,
5508
5513
(
1980
).
21.
D. L.
Phillips
,
M. Z.
Zgierski
, and
A. B.
Myers
, “
Resonance Raman excitation profiles of 1,3-butadiene in vapor and solution phases
,”
J. Phys. Chem.
97
,
1800
1809
(
1993
).
22.
F.
Assenmacher
,
M.
Gutmann
,
G.
Hohlneicher
,
V.
Stert
, and
W.
Radloff
, “
Ultrafast dynamics of the 11Bu-state of 1,3-butadiene after excitation at 204 nm
,”
Phys. Chem. Chem. Phys.
3
,
2981
2982
(
2001
).
23.
W.
Fuß
,
W. E.
Schmid
, and
S. A.
Trushin
, “
Ultrafast electronic relaxation of s-trans-butadiene
,”
Chem. Phys. Lett.
342
,
91
98
(
2001
).
24.
P.
Hockett
,
E.
Ripani
,
A.
Rytwinski
, and
A.
Stolow
, “
Probing ultrafast dynamics with time-resolved multi-dimensional coincidence imaging: Butadiene
,”
J. Mod. Opt.
60
,
1409
1425
(
2013
).
25.
A. E.
Boguslavskiy
,
O.
Schalk
,
N.
Gador
,
W. J.
Glover
,
T.
Mori
,
T.
Schultz
,
M. S.
Schuurman
,
T. J.
Martínez
, and
A.
Stolow
, “
Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. I. Time-resolved photoelectron-photoion coincidence spectroscopy
,”
J. Chem. Phys.
148
,
164302
(
2018
).
26.
M. S.
Schuurman
and
A.
Stolow
, “
Dynamics at conical intersections
,”
Annu. Rev. Phys. Chem.
69
,
427
450
(
2018
).
27.
R. J.
MacDonell
,
O.
Schalk
,
T.
Geng
,
R. D.
Thomas
,
R.
Feifel
,
T.
Hansson
, and
M. S.
Schuurman
, “
Excited state dynamics of acrylonitrile: Substituent effects at conical intersections interrogated via time-resolved photoelectron spectroscopy and ab initio simulation
,”
J. Chem. Phys.
145
,
114306
(
2016
).
28.
A. M. D.
Lee
,
J. D.
Coe
,
S.
Ullrich
,
M.-L.
Ho
,
S.-J.
Lee
,
B.-M.
Cheng
,
M. Z.
Zgierski
,
I.-C.
Chen
,
T. J.
Martínez
, and
A.
Stolow
, “
Substituent effects on dynamics at conical intersections: α, β-enones
,”
J. Phys. Chem. A
111
,
11948
11960
(
2007
).
29.
S. P.
Neville
,
Y.
Wang
,
A. E.
Boguslavskiy
,
A.
Stolow
, and
M. S.
Schuurman
, “
Substituent effects on dynamics at conical intersections: Allene and methyl allenes
,”
J. Chem. Phys.
144
,
014305
(
2016
).
30.
H.
Kang
,
B.
Jung
, and
S. K.
Kim
, “
Mechanism for ultrafast internal conversion of adenine
,”
J. Chem. Phys.
118
,
6717
6719
(
2003
).
31.
H.
Satzger
,
D.
Townsend
,
M. Z.
Zgierski
,
S.
Patchkovskii
,
S.
Ullrich
, and
A.
Stolow
, “
Primary processes underlying the photostability of isolated DNA bases: Adenine
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
10196
10201
(
2006
).
32.
R. J.
MacDonell
and
M. S.
Schuurman
, “
Site-selective isomerization of cyano-substituted butadienes: Chemical control of nonadiabatic dynamics
,”
J. Phys. Chem. A
123
,
4693
4701
(
2019
).
33.
R. J.
MacDonell
and
M. S.
Schuurman
, “
Substituent effects on the nonadiabatic dynamics of ethylene: π-donors and π-acceptors
,”
Chem. Phys.
515
,
360
368
(
2018
).
34.
M. E.
Corrales
,
V.
Loriot
,
G.
Balerdi
,
J.
González-Vázquez
,
R.
de Nalda
,
L.
Bañares
, and
A. H.
Zewail
, “
Structural dynamics effects on the ultrafast chemical bond cleavage of a photodissociation reaction
,”
Phys. Chem. Chem. Phys.
16
,
8812
8818
(
2014
).
35.
M. L.
Murillo-Sánchez
,
S. M.
Poullain
,
J. J.
Bajo
,
M. E.
Corrales
,
J.
González-Vázquez
,
I. R.
Solá
, and
L.
Bañares
, “
Halogen-atom effect on the ultrafast photodissociation dynamics of the dihalomethanes CH2ICl and CH2BrI
,”
Phys. Chem. Chem. Phys.
20
,
20766
20778
(
2018
).
36.
A.
Stolow
,
A. E.
Bragg
, and
D. M.
Neumark
, “
Femtosecond time-resolved photoelectron spectroscopy
,”
Chem. Rev.
104
,
1719
1758
(
2004
).
37.
O.
Schalk
,
A. E.
Boguslavskiy
,
A.
Stolow
, and
M. S.
Schuurman
, “
Through-bond interactions and the localization of excited-state dynamics
,”
J. Am. Chem. Soc.
133
,
16451
16458
(
2011
).
38.
H.
Lischka
 et al, COLUMBUS, an ab initio electronic structure program, release 7.0,
2012
.
39.
F.
Aquilante
 et al, “
Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table
,”
J. Comput. Chem.
37
,
506
541
(
2016
).
40.
S.
Vancoillie
,
M. G.
Delcey
,
R.
Lindh
,
V.
Vysotskiy
,
P.
Malmqvist
, and
V.
Veryazov
, “
Parallelization of a multiconfigurational perturbation theory
,”
J. Comput. Chem.
34
,
1937
1948
(
2013
).
41.
T. J.
Martínez
,
M.
Ben-Nun
, and
R. D.
Levine
, “
Multi-electronic-state molecular dynamics: A wave function approach with applications
,”
J. Phys. Chem.
100
,
7884
7895
(
1996
).
42.
T. J.
Martínez
,
M.
Ben-Nun
, and
R. D.
Levine
, “
Molecular collision dynamics on several electronic states
,”
J. Phys. Chem. A
101
,
6389
6402
(
1997
).
43.
M.
Ben-Nun
,
J.
Quenneville
, and
T. J.
Martínez
, “
Ab initio multiple spawning: Photochemistry from first principles quantum molecular dynamics
,”
J. Phys. Chem. A
104
,
5161
5175
(
2000
).
44.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
, “
Electronic structure calculations on workstation computers: The program system turbomole
,”
Chem. Phys. Lett.
162
,
165
169
(
1989
).
45.
F.
Weigend
and
M.
Häser
, “
RI-MP2: First derivatives and global consistency
,”
Theor. Chem. Acc.
97
,
331
340
(
1997
).
46.
M. D.
Hack
,
A. M.
Wensmann
,
D. G.
Truhlar
,
M.
Ben-Nun
, and
T. J.
Martínez
, “
Comparison of full multiple spawning, trajectory surface hopping, and converged quantum mechanics for electronically nonadiabatic dynamics
,”
J. Chem. Phys.
115
,
1172
1186
(
2001
).
47.
H. R.
Hudock
,
B. G.
Levine
,
A. L.
Thompson
,
H.
Satzger
,
D.
Townsend
,
N.
Gador
,
S.
Ullrich
,
A.
Stolow
, and
T. J.
Martínez
, “
Ab initio molecular dynamics and time-resolved photoelectron spectroscopy of electronically excited uracil and thymine
,”
J. Phys. Chem. A
111
,
8500
8508
(
2007
).
48.
H. R.
Hudock
and
T. J.
Martínez
, “
Excited-state dynamics of cytosine reveal multiple intrinsic subpicosecond pathways
,”
ChemPhysChem
9
,
2486
2490
(
2008
).
49.
M.
Spanner
,
S.
Patchkovskii
,
C.
Zhou
,
S.
Matsika
,
M.
Kotur
, and
T. C.
Weinacht
, “
Dyson norms in the XUV and strong-field ionization of polyatomics: Cytosine and uracil
,”
Phys. Rev. A
86
,
053406
(
2012
).
50.
F. L.
Hirshfeld
, “
Bonded-atom fragments for describing molecular charge densities
,”
Theor. Chim. Acta.
44
,
129
138
(
1977
).
51.
P.
Bultinck
,
C. V.
Alsenoy
,
P. W.
Ayers
, and
R.
Carbó-Dorca
, “
Critical analysis and extension of the Hirshfeld atoms in molecules
,”
J. Chem. Phys.
126
,
144111
(
2007
).

Supplementary Material

You do not currently have access to this content.