In modeling the interior of cells by simulating a reaction–diffusion master equation over a grid of compartments, one employs the assumption that the copy numbers of various chemical species are small, discrete quantities. We show that, in this case, textbook expressions for the change in Gibbs free energy accompanying a chemical reaction or diffusion between adjacent compartments are inaccurate. We derive exact expressions for these free energy changes for the case of discrete copy numbers and show how these expressions reduce to traditional expressions under a series of successive approximations leveraging the relative sizes of the stoichiometric coefficients and the copy numbers of the solutes and solvent. Numerical results are presented to corroborate the claim that if the copy numbers are treated as discrete quantities, then only these more accurate expressions lead to correct behavior. Thus, the newly derived expressions are critical for correctly computing entropy production in mesoscopic simulations based on the reaction–diffusion master equation formalism.

1.
R.
Grima
and
S.
Schnell
, “
Modelling reaction kinetics inside cells
,”
Essays Biochem.
45
,
41
56
(
2008
).
2.
N.
Tanaka
and
G. A.
Papoian
, “
Reverse-engineering of biochemical reaction networks from spatio-temporal correlations of fluorescence fluctuations
,”
J. Theor. Biol.
264
(
2
),
490
500
(
2010
).
3.
F.
Baras
and
M.
Malek Mansour
, “
Reaction-diffusion master equation: A comparison with microscopic simulations
,”
Phys. Rev. E
54
(
6
),
6139
(
1996
).
4.
D.
Bernstein
, “
Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm
,”
Phys. Rev. E
71
(
4
),
041103
(
2005
).
5.
D. T.
Gillespie
, “
Exact stochastic simulation of coupled chemical reactions
,”
J. Phys. Chem.
81
(
25
),
2340
2361
(
1977
).
6.
J.
Schaff
,
C. C.
Fink
,
B.
Slepchenko
,
J. H.
Carson
, and
L. M.
Loew
, “
A general computational framework for modeling cellular structure and function
,”
Biophys. J.
73
(
3
),
1135
1146
(
1997
).
7.
L. M.
Loew
and
C. S.
James
, “
The virtual cell: A software environment for computational cell biology
,”
Trends Biotechnol.
19
(
10
),
401
406
(
2001
).
8.
E.
Roberts
,
J. E.
Stone
, and
Z.
Luthey-Schulten
, “
Lattice microbes: High-performance stochastic simulation method for the reaction-diffusion master equation
,”
J. Comput. Chem.
34
(
3
),
245
255
(
2013
).
9.
M. J.
Hallock
and
Z.
Luthey-Schulten
, “
Improving reaction kernel performance in lattice microbes: Particle-wise propensities and run-time generated code
,” in
2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
(
IEEE
,
2016
), pp.
428
434
.
10.
J.
Hattne
,
D.
Fange
, and
J.
Elf
, “
Stochastic reaction-diffusion simulation with mesoRD
,”
Bioinformatics
21
(
12
),
2923
2924
(
2005
).
11.
K.
Popov
,
J.
Komianos
, and
G. A.
Papoian
, “
MEDYAN: Mechanochemical simulations of contraction and polarity alignment in actomyosin networks
,”
PLoS Comput. Biol.
12
(
4
),
e1004877
(
2016
).
12.
C.
Floyd
,
G. A.
Papoian
, and
C.
Jarzynski
, “
Quantifying dissipation in actomyosin networks
,”
Interface Focus
9
(
3
),
20180078
(
2019
).
13.
M.
Ander
,
B.
Pedro
,
B.
Di Ventura
,
J.
Ferkinghoff-Borg
,
M. A. F. M.
Foglierini
,
C.
Lemerle
,
I.
Tomas-Oliveira
, and
L.
Serrano
, “
Smartcell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: Analysis of simple networks
,”
Syst. Biol.
1
(
1
),
129
138
(
2004
).
14.
B.
Drawert
,
S.
Engblom
, and
A.
Hellander
, “
URDME: A modular framework for stochastic simulation of reaction-transport processes in complex geometries
,”
BMC Syst. Biol.
6
(
1
),
76
(
2012
).
15.
S. S.
Andrews
,
J. A.
Nathan
,
R.
Brent
, and
P. A.
Adam
, “
Detailed simulations of cell biology with Smoldyn 2.1
,”
PLoS Comput. Biol.
6
(
3
),
e1000705
(
2010
).
16.
M.
Vigelius
,
A.
Lane
, and
B.
Meyer
, “
Accelerating reaction–diffusion simulations with general-purpose graphics processing units
,”
Bioinformatics
27
(
2
),
288
290
(
2010
).
17.
S.
Wils
and
E.
De Schutter
, “
Steps: Modeling and simulating complex reaction-diffusion systems with python
,”
Front. Neuroinf.
3
,
15
(
2009
).
18.
T. L.
Hill
,
Free Energy Transduction and Biochemical Cycle Kinetics
(
Courier Corporation
,
2004
).
19.
T. M.
Earnest
,
J. A.
Cole
, and
Z.
Luthey-Schulten
, “
Simulating biological processes: Stochastic physics from whole cells to colonies
,”
Rep. Prog. Phys.
81
(
5
),
052601
(
2018
).
20.
D. A.
Beard
and
H.
Qian
, “
Relationship between thermodynamic driving force and one-way fluxes in reversible processes
,”
PLoS One
2
(
1
),
e144
(
2007
).
21.
I.
Prigogine
,
Introduction to Thermodynamics of Irreversible Processes
, 3rd ed. (
Interscience
,
New York
,
1967
).
22.
R.
Rao
and
M.
Esposito
, “
Nonequilibrium thermodynamics of chemical reaction networks: Wisdom from stochastic thermodynamics
,”
Phys. Rev. X
6
(
4
),
041064
(
2016
).
23.
J. L.
England
, “
Dissipative adaptation in driven self-assembly
,”
Nat. Nanotechnol.
10
(
11
),
919
(
2015
).
24.
D. S.
Seara
,
V.
Yadav
,
I.
Linsmeier
,
A. P.
Tabatabai
,
W. O.
Patrick
,
S. M. A.
Tabei
,
S.
Banerjee
, and
M. P.
Murrell
, “
Entropy production rate is maximized in non-contractile actomyosin
,”
Nat. Commun.
9
(
1
),
4948
(
2018
).
25.
J. L.
England
, “
Statistical physics of self-replication
,”
J. Chem. Phys.
139
(
12
),
121923
(
2013
).
26.
I.
Prigogine
and
G.
Nicolis
, “
Biological order, structure and instabilities
,”
Q. Rev. Biophys.
4
(
2-3
),
107
148
(
1971
).
27.
H. B.
Callen
,
Thermodynamics and an Introduction to Thermostatistics
(
Wiley
,
1998
).
28.
P.
Attard
,
Thermodynamics and Statistical Mechanics
(
CUP Archive
,
2002
).
29.
G.
Nicolis
and
I.
Prigogine
,
Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations
(
Wiley
,
1977
), pp.
339
426
.
30.
H.
Lodish
,
J. E.
Darnell
,
A.
Berk
,
C. A.
Kaiser
,
M.
Krieger
,
M. P.
Scott
,
A.
Bretscher
,
H.
Ploegh
,
P.
Matsudaira
 et al.,
Molecular Cell Biology
(
Macmillan
,
2008
).
31.
R.
Phillips
,
J.
Theriot
,
J.
Kondev
, and
H.
Garcia
,
Physical Biology of the Cell
(
Garland Science
,
2012
).
32.
B.
Alberts
,
D.
Bray
,
J.
Lewis
,
M.
Raff
,
K.
Roberts
, and
J. D.
Watson
,
Molecular Biology of the Cell
, 4th ed. (
Garland
,
2002
).
33.
P. W.
Atkins
,
J.
De Paula
, and
J.
Keeler
,
Atkins’ Physical Chemistry
(
Oxford University Press
,
2018
).
34.
D. A.
Beard
and
H.
Qian
,
Chemical Biophysics: Quantitative Analysis of Cellular Systems
(
Cambridge University Press
,
2008
).
35.
D. A.
McQuarrie
and
J. D.
Simon
,
Physical Chemistry: A Molecular Approach
(
University Science Books
,
Sausalito, CA
,
1997
), Vol. 1.
36.
T. L.
Hill
, “
Perspective: Nanothermodynamics
,”
Nano Lett.
1
,
111
(
2001
).
37.
T. L.
Hill
,
Thermodynamics of Small Systems
(
Courier Corporation
,
1994
).
38.
J.
de Heer
, “
The free energy charge accompanying a chemical reaction and the Gibbs-Duhem equation
,”
J. Chem. Educ.
63
(
11
),
950
(
1986
).
39.
T.
Engel
,
P.
Reid
 et al.,
Physical Chemistry
(
Pearson
,
2006
).
40.

The argument of the logarithm, NAΘA, has dimensions of concentration, however it is understood that such quantities are taken with reference to some standard concentration, typically 1M.

41.
D. M.
Anderson
,
J. D.
Benson
, and
A. J.
Kearsley
, “
Foundations of modeling in cryobiology—I: Concentration, Gibbs energy, and chemical potential relationships
,”
Cryobiology
69
(
3
),
349
360
(
2014
).
42.
G. M.
Barrow
, “
Free energy and equilibrium: The basis of G0 = -RT in K for reactions in solution
,”
J. Chem. Educ.
60
(
8
),
648
(
1983
).
43.

We have logN+σN(N+σ)=log1+σN(N+σ)σ for large N.

44.
Y.
Mishin
, “
Thermodynamic theory of equilibrium fluctuations
,”
Ann. Phys.
363
,
48
97
(
2015
).
45.
R.
Milo
and
R.
Phillips
,
Cell Biology by the Numbers
(
Garland Science
,
2015
).
46.
S.
Engblom
,
L.
Ferm
,
A.
Hellander
, and
P.
Lötstedt
, “
Simulation of stochastic reaction-diffusion processes on unstructured meshes
,”
SIAM J. Sci. Comput.
31
(
3
),
1774
1797
(
2009
).
47.
S. A.
Isaacson
and
C. S.
Peskin
, “
Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations
,”
SIAM J. Sci. Comput.
28
(
1
),
47
74
(
2006
).
48.
B.
Bayati
,
P.
Chatelain
, and
P.
Koumoutsakos
, “
Adaptive mesh refinement for stochastic reaction–diffusion processes
,”
J. Comput. Phys.
230
(
1
),
13
26
(
2011
).
49.
L.
Ferm
,
A.
Hellander
, and
P.
Lötstedt
, “
An adaptive algorithm for simulation of stochastic reaction–diffusion processes
,”
J. Comput. Phys.
229
(
2
),
343
360
(
2010
).
50.
M. B.
Flegg
,
S. J.
Chapman
, and
R.
Erban
, “
The two-regime method for optimizing stochastic reaction–diffusion simulations
,”
J. R. Soc., Interface
9
(
70
),
859
868
(
2011
).
51.
M. A.
Gibson
and
J.
Bruck
, “
Efficient exact stochastic simulation of chemical systems with many species and many channels
,”
J. Phys. Chem. A
104
(
9
),
1876
1889
(
2000
).
52.
J.
Borge
, “
Reviewing some crucial concepts of Gibbs energy in chemical equilibrium using a computer-assisted, guided-problem-solving approach
,”
J. Chem. Educ.
92
(
2
),
296
304
(
2014
).
53.
R.
Erban
,
M. B.
Flegg
, and
G. A.
Papoian
, “
Multiscale stochastic reaction–diffusion modeling: Application to actin dynamics in filopodia
,”
Bull. Math. Biol.
76
(
4
),
799
818
(
2014
).
54.
D.
Ulrich
,
G. A.
Papoian
, and
R.
Erban
, “
Steric effects induce geometric remodeling of actin bundles in filopodia
,”
Biophys. J.
110
(
9
),
2066
2075
(
2016
).
55.
Y.
Lan
and
G. A.
Papoian
, “
The stochastic dynamics of filopodial growth
,”
Biophys. J.
94
(
10
),
3839
3852
(
2008
).
56.

The product rule can be derived as d(fg) = (f + df) (g + dg) − fg = fdg + gdf + dfdg = fdg + gdf since the term dfdg is assumed to be negligible. We give this reminder to emphasize the presence of the cross term, which we do not neglect in the discrete case.

You do not currently have access to this content.