A stochastic model of autoregulated bursty gene expression by Kumar et al. [Phys. Rev. Lett. 113, 268105 (2014)] has been exactly solved in steady-state conditions under the implicit assumption that protein numbers are sufficiently large such that fluctuations in protein numbers due to reversible protein–promoter binding can be ignored. Here, we derive an alternative model that takes into account these fluctuations and, hence, can be used to study low protein number effects. The exact steady-state protein number distribution is derived as a sum of Gaussian hypergeometric functions. We use the theory to study how promoter switching rates and the type of feedback influence the size of protein noise and noise-induced bistability. Furthermore, we show that our model predictions for the protein number distribution are significantly different from those of Kumar et al. when the protein mean is small, gene switching is fast, and protein binding to the gene is faster than the reverse unbinding reaction.

1.
S. S.
Shen-Orr
,
R.
Milo
,
S.
Mangan
, and
U.
Alon
, “
Network motifs in the transcriptional regulation network of Escherichia coli
,”
Nat. Genet.
31
,
64
(
2002
).
2.
N.
Rosenfeld
,
M. B.
Elowitz
, and
U.
Alon
, “
Negative autoregulation speeds the response times of transcription networks
,”
J. Mol. Biol.
323
,
785
793
(
2002
).
3.
M. L.
Simpson
,
C. D.
Cox
, and
G. S.
Sayler
, “
Frequency domain analysis of noise in autoregulated gene circuits
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
4551
4556
(
2003
).
4.
J.
Hasty
,
J.
Pradines
,
M.
Dolnik
, and
J. J.
Collins
, “
Noise-based switches and amplifiers for gene expression
,”
Proc. Natl. Acad. Sci. U. S. A.
97
,
2075
2080
(
2000
).
5.
P.
Liu
,
Z.
Yuan
,
H.
Wang
, and
T.
Zhou
, “
Decomposition and tunability of expression noise in the presence of coupled feedbacks
,”
Chaos
26
,
043108
(
2016
).
6.
C.
Jia
,
P.
Xie
,
M.
Chen
, and
M. Q.
Zhang
, “
Stochastic fluctuations can reveal the feedback signs of gene regulatory networks at the single-molecule level
,”
Sci. Rep.
7
,
16037
(
2017
).
7.
C.
Jia
,
H.
Qian
,
M.
Chen
, and
M. Q.
Zhang
, “
Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks
,”
J. Chem. Phys.
148
,
095102
(
2018
).
8.
T.-L.
To
and
N.
Maheshri
, “
Noise can induce bimodality in positive transcriptional feedback loops without bistability
,”
Science
327
,
1142
1145
(
2010
).
9.
R.
Grima
,
D.
Schmidt
, and
T.
Newman
, “
Steady-state fluctuations of a genetic feedback loop: An exact solution
,”
J. Chem. Phys.
137
,
035104
(
2012
).
10.
C. H.
Ko
 et al, “
Emergence of noise-induced oscillations in the central circadian pacemaker
,”
PLoS Biol.
8
,
e1000513
(
2010
).
11.
P.
Thomas
,
A. V.
Straube
, and
R.
Grima
, “
The slow-scale linear noise approximation: An accurate, reduced stochastic description of biochemical networks under timescale separation conditions
,”
BMC Syst. Biol.
6
,
39
(
2012
).
12.
P.
Thomas
,
A. V.
Straube
,
J.
Timmer
,
C.
Fleck
, and
R.
Grima
, “
Signatures of nonlinearity in single cell noise-induced oscillations
,”
J. Theor. Biol.
335
,
222
234
(
2013
).
13.
D. B.
Forger
and
C. S.
Peskin
, “
Stochastic simulation of the mammalian circadian clock
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
321
324
(
2005
).
14.
M. L.
Guerriero
 et al, “
Stochastic properties of the plant circadian clock
,”
J. R. Soc., Interface
9
,
744
756
(
2011
).
15.
J.
Holehouse
,
Z.
Cao
, and
R.
Grima
, “
Stochastic modeling of auto-regulatory genetic feedback loops: a review and comparative study
,” arXiv:1910.08937 (
2019
).
16.
N.
Friedman
,
L.
Cai
, and
X. S.
Xie
, “
Linking stochastic dynamics to population distribution: An analytical framework of gene expression
,”
Phys. Rev. Lett.
97
,
168302
(
2006
).
17.
P.
Thomas
,
H.
Matuschek
, and
R.
Grima
, “
How reliable is the linear noise approximation of gene regulatory networks?
,”
BMC Genomics
14
,
S5
(
2013
).
18.
M. C.
Mackey
,
M.
Tyran-Kaminska
, and
R.
Yvinec
, “
Dynamic behavior of stochastic gene expression models in the presence of bursting
,”
SIAM J. Appl. Math.
73
,
1830
1852
(
2013
).
19.
P.
Bokes
and
A.
Singh
, “
Protein copy number distributions for a self-regulating gene in the presence of decoy binding sites
,”
PLoS One
10
,
e0120555
(
2015
).
20.
P.
Thomas
,
N.
Popović
, and
R.
Grima
, “
Phenotypic switching in gene regulatory networks
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
6994
6999
(
2014
).
21.
H.
Ge
,
H.
Qian
, and
X. S.
Xie
, “
Stochastic phenotype transition of a single cell in an intermediate region of gene state switching
,”
Phys. Rev. Lett.
114
,
078101
(
2015
).
22.
C.
Jia
,
M. Q.
Zhang
, and
Q.
Hong
, “
Emergent Lévy behavior in single-cell stochastic gene expression
,”
Phys. Rev. E
96
,
040402(R)
(
2017
).
23.
J.
Chen
,
G. G.
Yin
, and
M. Q.
Zhang
, “
Single-cell stochastic gene expression kinetics with coupled positive-plus-negative feedback
,”
Phys. Rev. E
100
,
052406
(
2019
).
24.
N.
Kumar
,
T.
Platini
, and
R. V.
Kulkarni
, “
Exact distributions for stochastic gene expression models with bursting and feedback
,”
Phys. Rev. Lett.
113
,
268105
(
2014
).
25.
J.
Yu
,
J.
Xiao
,
X.
Ren
,
K.
Lao
, and
X. S.
Xie
, “
Probing gene expression in live cells, one protein molecule at a time
,”
Science
311
,
1600
1603
(
2006
).
26.
Y.
Taniguchi
 et al, “
Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells
,”
Science
329
,
533
538
(
2010
).
27.
V.
Shahrezaei
and
P. S.
Swain
, “
Analytical distributions for stochastic gene expression
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
17256
17261
(
2008
).
28.
J. A.
Bernstein
,
A. B.
Khodursky
,
P.-H.
Lin
,
S.
Lin-Chao
, and
S. N.
Cohen
, “
Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
9697
9702
(
2002
).
29.
C.
Jia
, “
Simplification of Markov chains with infinite state space and the mathematical theory of random gene expression bursts
,”
Phys. Rev. E
96
,
032402
(
2017
).
30.
S.
Pigolotti
and
A.
Vulpiani
, “
Coarse graining of master equations with fast and slow states
,”
J. Chem. Phys.
128
,
154114
(
2008
).
31.
C.
Jia
, “
Reduction of Markov chains with two-time-scale state transitions
,”
Stochastics
88
,
73
105
(
2016
).
32.
C.
Jia
, “
Simplification of irreversible Markov chains by removal of states with fast leaving rates
,”
J. Theor. Biol.
400
,
129
137
(
2016
).
33.
S.
Bo
and
A.
Celani
, “
Multiple-scale stochastic processes: Decimation, averaging and beyond
,”
Phys. Rep.
670
,
1
59
(
2016
).
34.
Z.
Cao
and
R.
Grima
, “
Linear mapping approximation of gene regulatory networks with stochastic dynamics
,”
Nat. Commun.
9
,
3305
(
2018
).
35.
Z.
Cao
and
R.
Grima
, “
Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data
,”
J. R. Soc., Interface
16
,
20180967
(
2019
).
36.
F. W. J.
Olver
 et al, NIST Digital Library of Mathematical Functions,
2017
, http://dlmf.nist.gov/, Release 1.0.17 of 22 December 2017.
37.
J.
Paulsson
and
M.
Ehrenberg
, “
Random signal fluctuations can reduce random fluctuations in regulated components of chemical regulatory networks
,”
Phys. Rev. Lett.
84
,
5447
(
2000
).
38.
C.
Jia
, “
Model simplification and loss of irreversibility
,”
Phys. Rev. E
93
,
052149
(
2016
).
39.
J.
Holehouse
and
R.
Grima
, “
Revisiting the reduction of stochastic models of genetic feedback loops with fast promoter switching
,”
Biophys. J.
117
,
1311
(
2019
).
40.
E. M.
Ozbudak
,
M.
Thattai
,
I.
Kurtser
,
A. D.
Grossman
, and
A.
Van Oudenaarden
, “
Regulation of noise in the expression of a single gene
,”
Nat. Genet.
31
,
69
(
2002
).
41.
B.
Ingalls
, “
Sensitivity analysis: From model parameters to system behaviour
,”
Essays Biochem.
45
,
177
194
(
2008
).
You do not currently have access to this content.