The nuclear-electronic orbital (NEO) framework enables the incorporation of nuclear quantum effects by treating both electrons and specific key nuclei quantum-mechanically. The conventional NEO method predicates on the controversial Born–Oppenheimer separation between classical and quantum nuclei, and its potential energy surface only depends on the coordinates of classical nuclei. In this paper, based on the fact that quantum nuclei are relatively localized, we develop the constrained nuclear-electronic orbital density functional theory (cNEO-DFT) by imposing a constraint on the expectation value of the quantum nuclear position. In this way, an extended NEO energy surface is obtained, which also depends on the quantum nuclear position. Compared to the potential energy surface obtained from conventional DFT, the extended NEO energy surface incorporates the nuclear quantum effects, which have notable impacts on the energy profile. Furthermore, cNEO-DFT can facilitate the location of NEO stationary states. It potentially can be used in geometry optimization, transition states search, and the calculation of reaction dynamics.

1.
S.
Hammes-Schiffer
,
J. Am. Chem. Soc.
137
,
8860
(
2015
).
2.
C.
Liu
,
B. C.
Colón
,
M.
Ziesack
,
P. A.
Silver
, and
D. G.
Nocera
,
Science
352
,
1210
(
2016
).
3.
W. J.
Youngblood
,
S.-H. A.
Lee
,
Y.
Kobayashi
,
E. A.
Hernandez-Pagan
,
P. G.
Hoertz
,
T. A.
Moore
,
A. L.
Moore
,
D.
Gust
, and
T. E.
Mallouk
,
J. Am. Chem. Soc.
131
,
926
(
2009
).
4.
M. L.
Helm
,
M. P.
Stewart
,
R. M.
Bullock
,
M. R.
DuBois
, and
D. L.
DuBois
,
Science
333
,
863
(
2011
).
5.
T. J.
Meyer
,
M. H. V.
Huynh
, and
H. H.
Thorp
,
Angew. Chem., Int. Ed.
46
,
5284
(
2007
).
6.
V. R. I.
Kaila
,
M. I.
Verkhovsky
, and
M.
Wikström
,
Chem. Rev.
110
,
7062
(
2010
).
7.
S. P.
Webb
,
T.
Iordanov
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
117
,
4106
(
2002
).
8.
H.
Nakai
,
Int. J. Quantum Chem.
107
,
2849
(
2007
).
9.
M. V.
Pak
,
A.
Chakraborty
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. A
111
,
4522
(
2007
).
10.
T.
Ishimoto
,
M.
Tachikawa
, and
U.
Nagashima
,
Int. J. Quantum Chem.
109
,
2677
(
2009
).
11.
F.
Pavošević
,
T.
Culpitt
, and
S.
Hammes-Schiffer
,
J. Chem. Theory Comput.
15
,
338
(
2019
).
12.
F.
Pavošević
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
151
,
074104
(
2019
).
13.
A.
Chakraborty
,
M. V.
Pak
, and
S.
Hammes-Schiffer
,
Phys. Rev. Lett.
101
,
153001
(
2008
).
14.
T.
Udagawa
,
T.
Tsuneda
, and
M.
Tachikawa
,
Phys. Rev. A
89
,
052519
(
2014
).
15.
A.
Sirjoosingh
,
M. V.
Pak
,
K. R.
Brorsen
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
142
,
214107
(
2015
).
16.
Y.
Yang
,
K. R.
Brorsen
,
T.
Culpitt
,
M. V.
Pak
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
147
,
114113
(
2017
).
17.
K. R.
Brorsen
,
P. E.
Schneider
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
149
,
044110
(
2018
).
18.
K. R.
Brorsen
,
Y.
Yang
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. Lett.
8
,
3488
(
2017
).
19.
Y.
Yang
,
T.
Culpitt
,
Z.
Tao
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
149
,
084105
(
2018
).
20.
Y.
Yang
,
T.
Culpitt
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. Lett.
9
,
1765
(
2018
).
21.
Y.
Yang
,
P. E.
Schneider
,
T.
Culpitt
,
F.
Pavošević
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. Lett.
10
,
1167
(
2019
).
22.
T.
Culpitt
,
Y.
Yang
,
F.
Pavošević
,
Z.
Tao
, and
S.
Hammes-Schiffer
,
J. Chem. Phys.
150
,
201101
(
2019
).
23.
T.
Iordanov
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
118
,
9489
(
2003
).
24.
A. D.
Bochevarov
,
E. F.
Valeev
, and
C.
David Sherill
,
Mol. Phys.
102
,
111
(
2004
).
25.
Q.
Wu
and
T.
Van Voorhis
,
Phys. Rev. A
72
,
024502
(
2005
).
26.
Q.
Wu
and
T.
Van Voorhis
,
J. Chem. Theory Comput.
2
,
765
(
2006
).
27.
P.
Ramos
and
M.
Pavanello
,
J. Chem. Phys.
148
,
144103
(
2018
).
28.
D. A.
Knoll
and
D. E.
Keyes
,
J. Comput. Phys.
193
,
357
(
2004
).
29.
V.
Eyert
,
J. Comput. Phys.
124
,
271
(
1996
).
30.
D. D.
O’Regan
and
G.
Teobaldi
,
Phys. Rev. B
94
,
035159
(
2016
).
31.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.-L.
Chan
,
WIREs Comput. Mol. Sci.
8
,
e1340
(
2018
).
32.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
33.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
34.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
35.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
36.
R. D.
Bardo
and
K.
Ruedenberg
,
J. Chem. Phys.
60
,
918
(
1974
).
37.
M. E.
Tuckerman
and
D.
Marx
,
Phys. Rev. Lett.
86
,
4946
(
2001
).
38.
A.
Abedi
,
N. T.
Maitra
, and
E. K. U.
Gross
,
Phys. Rev. Lett.
105
,
123002
(
2010
).
39.
A.
Abedi
,
N. T.
Maitra
, and
E.
Gross
,
J. Chem. Phys.
137
,
22A530
(
2012
).
40.
L.
Lacombe
,
N. M.
Hoffmann
, and
N. T.
Maitra
,
Phys. Rev. Lett.
123
,
083201
(
2019
).

Supplementary Material

You do not currently have access to this content.