Monolayer iron oxides grown on metal substrates have widely been used as model systems in heterogeneous catalysis. By means of ambient-pressure scanning tunneling microscopy (AP-STM), we studied the in situ oxidation and reduction of FeO(111) grown on Au(111) by oxygen (O2) and carbon monoxide (CO), respectively. Oxygen dislocation lines present on FeO islands are highly active for O2 dissociation. X-ray photoelectron spectroscopy measurements distinctly reveal the reversible oxidation and reduction of FeO islands after sequential exposure to O2 and CO. Our AP-STM results show that excess O atoms can be further incorporated on dislocation lines and react with CO, whereas the CO is not strong enough to reduce the FeO supported on Au(111) that is essential to retain the activity of oxygen dislocation lines.

1.
A.
Picone
,
M.
Riva
,
A.
Brambilla
,
A.
Calloni
,
G.
Bussetti
,
M.
Finazzi
,
F.
Ciccacci
, and
L.
Duò
, “
Reactive metal-oxide interfaces: A microscopic view
,”
Surf. Sci. Rep.
71
,
32
76
(
2016
).
2.
Q.
Fu
and
T.
Wagner
, “
Interaction of nanostructured metal overlayers with oxide surfaces
,”
Surf. Sci. Rep.
62
,
431
498
(
2017
).
3.
A.
Zavabeti
,
J. Z.
Ou
,
B. J.
Carey
,
N.
Syed
,
R.
Orrell-Trigg
,
E. L. H.
Mayes
,
C.
Xu
,
O.
Kavehei
,
A. P.
O’Mullane
,
R. B.
Kaner
,
K.
Kalantar-zadeh
, and
T.
Daeneke
, “
A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides
,”
Science
358
,
332
335
(
2017
).
4.
J. A.
Rodriguez
,
P.
Liu
,
J.
Graciani
,
S. D.
Senanayake
,
D. C.
Grinter
,
D.
Stacchiola
,
J.
Hrbek
, and
J.
Fernández-Sanz
, “
Inverse oxide/metal catalysts in fundamental studies and practical applications: A perspective of recent developments
,”
J. Phys. Chem. Lett.
7
,
2627
2639
(
2016
).
5.
J.
Zhang
,
H.
Wang
,
L.
Wang
,
S.
Ali
,
C.
Wang
,
L.
Wang
,
X.
Meng
,
B.
Li
,
D.
Su
, and
F.
Xiao
, “
Wet-Chemistry strong metal–support interactions in titania-supported Au catalysts
,”
J. Am. Chem. Soc.
141
,
2975
2983
(
2019
).
6.
G. S.
Parkinson
, “
Iron oxide surfaces
,”
Surf. Sci. Rep.
71
,
272
365
(
2016
).
7.
Q.
Fu
,
F.
Yang
, and
X. H.
Bao
, “
Interface-confined oxide nanostructures for catalytic oxidation reactions
,”
Acc. Chem. Res.
46
,
1692
1701
(
2013
).
8.
M. D.
Santis
,
A.
Buchsbaum
,
P.
Varga
, and
M.
Schmid
, “
Growth of ultrathin cobalt oxide films on Pt(111)
,”
Phys. Rev. B
84
,
125430
(
2011
).
9.
J.
Fester
,
M.
García-Melchor
,
A. S.
Walton
,
M.
Bajdich
,
Z.
Li
,
L.
Lammich
,
A.
Vojvodic
, and
J. V.
Lauritsen
, “
Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands
,”
Nat. Commun.
8
,
14169
(
2017
).
10.
I.
Szenti
,
L.
Bugyi
, and
Z.
Kónya
, “
The promotion of CO dissociation by molybdenum oxide overlayers on rhodium
,”
Surf. Sci.
657
,
1
9
(
2017
).
11.
X.
Zhou
,
G. J. A.
Mannie
,
J.
Yin
,
X.
Yu
,
C. J.
Weststrate
,
X.
Wen
,
K.
Wu
,
Y.
Yang
,
Y.
Li
, and
J. W.
Niemantsverdriet
, “
Iron carbidization on thin-film silica and silicon: A near-ambient-pressure X-ray photoelectron spectroscopy and scanning tunneling microscopy study
,”
ACS Catal.
8
,
7326
7333
(
2018
).
12.
C.
Xu
,
G.
Chen
,
Y.
Zhao
,
P.
Liu
,
X.
Duan
,
L.
Gu
,
G.
Fu
,
Y.
Yuan
, and
N.
Zheng
, “
Interfacing with silica boosts the catalysis of copper
,”
Nat. Commu.
9
,
3367
(
2018
).
13.
J.
Graciani
,
K.
Mudiyanselage
,
F.
Xu
,
A. E.
Baber
,
J.
Evans
,
S. D.
Senanayake
,
D. J.
Stacchiola
,
P.
Liu
,
J.
Hrbek
,
J. F.
Sanz
, and
J. A.
Rodriguez
, “
Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2
,”
Science
345
,
546
550
(
2014
).
14.
J.
IngoFlege
and
D. C.
Grinter
, “
In situ studies of oxide nucleation, growth, and transformation using slow electrons
,”
Prog. Surf. Sci.
93
,
21
45
(
2018
).
15.
C.
Ratnasamy
and
J. P.
Wagner
, “
Water gas shift catalysis
,”
Catal. Rev.
51
,
325
440
(
2009
).
16.
M.
Zhu
,
T. C. R.
Rocha
,
T.
Lunkenbein
,
A.
Knop-Gericke
,
R.
Schlögl
, and
I. E.
Wachs
, “
Promotion mechanisms of iron oxide-based high temperature water-gas shift catalysts by chromium and copper
,”
ACS Catal.
6
,
4455
4464
(
2016
).
17.
I.
Ro
,
I. B.
Aragao
,
J. P.
Chada
,
Y.
Liu
,
K. R.
Rivera-Dones
,
M. R.
Ball
,
D.
Zanchet
,
J. A.
Dumesic
, and
G. W.
Huber
, “
The role of Pt-FexOy interfacial sites for CO oxidation
,”
J. Catal.
358
,
19
26
(
2018
).
18.
H.
Chen
,
Y.
Liu
,
F.
Yang
,
M.
Wei
,
X.
Zhao
,
Y.
Ning
,
Q.
Liu
,
Y.
Zhang
,
Q.
Fu
, and
X.
Bao
, “
Active phase of FeOx/Pt catalysts in low-temperature CO oxidation and preferential oxidation of CO reaction
,”
J. Phys. Chem. C
121
,
10398
10405
(
2017
).
19.
H. J.
Freund
, “
Oxygen activation on oxide surfaces: A perspective at the atomic level
,”
Catal. Today
238
,
2
9
(
2014
).
20.
I. N.
Remediakis
,
N.
Lopez
, and
J. K.
Nørskov
, “
CO oxidation on rutile-supported Au nanoparticle
,”
Angew. Chem., Int. Ed.
44
,
1824
1826
(
2005
).
21.
R. A.
Ojifinni
,
N. S.
Froemming
,
J.
Gong
,
M.
Pan
,
T. S.
Kim
,
J. M.
White
,
G.
Henkelman
, and
C.
Buddie Mullins
, “
Water-enhanced low-temperature CO oxidation and isotope effects on atomic oxygen-covered Au(111)
,”
J. Am. Chem. Soc.
130
,
6801
6812
(
2008
).
22.
Q.
Pan
,
X.
Weng
,
M.
Chen
,
L.
Giordano
,
G.
Pacchioni
,
C.
Noguera
,
J.
Goniakowski
,
S.
Shaikhutdinov
, and
H. J.
Freund
, “
Enhanced CO oxidation on the oxide/metal interface: From ultra-high vacuum to near-atmospheric pressures
,”
ChemCatChem
7
,
2620
2627
(
2015
).
23.
R.
Toyoshima
,
M.
Yoshida
,
Y.
Monya
,
K.
Suzuki
,
K.
Amemiya
,
K.
Mase
,
B. S.
Mun
, and
H.
Kondoh
, “
In situ photoemission observation of catalytic CO oxidation reaction on Pd(110) under near-ambient pressure conditions: Evidence for the Langmuir−Hinshelwood mechanism
,”
J. Phys. Chem. C
117
,
20617
20624
(
2013
).
24.
D.
Widmann
and
R. J.
Behm
, “
Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts
,”
Acc. Chem. Res.
47
,
740
749
(
2014
).
25.
D.
Widmann
and
R. J.
Behm
, “
Dynamic surface composition in a Mars-van Krevelen type reaction: CO oxidation on Au/TiO2
,”
J. Catal.
357
,
263
273
(
2018
).
26.
Q.
Fu
,
W.
Li
,
Y.
Yao
,
H.
Liu
,
H.
Su
,
D.
Ma
,
X.
Gu
,
L.
Chen
,
Z.
Wang
,
H.
Zhang
,
B.
Wang
, and
X.
Bao
, “
Interface-confined ferrous centers for catalytic oxidation
,”
Science
328
,
1141
1144
(
2010
).
27.
H.
Zeuthen
,
W.
Kudernatsch
,
L. R.
Merte
,
L. K.
Ono
,
L.
Lammich
,
F.
Besenbacher
, and
S.
Wendt
, “
Unraveling the edge structures of platinum(111)-supported ultrathin FeO islands: The influence of oxidation state
,”
ACS Nano
9
,
573
583
(
2015
).
28.
W.
Kudernatsch
,
G.
Peng
,
H.
Zeuthen
,
Y.
Bai
,
L. R.
Merte
,
L.
Lammich
,
F.
Besenbacher
,
M.
Mavrikakis
, and
S.
Wendt
, “
Direct visualization of catalytically active sites at the FeO-Pt(111) interface
,”
ACS Nano
9
,
7804
7814
(
2015
).
29.
Q.
Fu
,
Y.
Yao
,
X.
Guo
,
M.
Wei
,
Y.
Ning
,
H.
Liu
,
F.
Yang
,
Z.
Liu
, and
X.
Bao
, “
Reversible structural transformation of FeOx nanostructures on Pt under cycling redox conditions and its effect on oxidation Catalysis
,”
Phys. Chem. Chem. Phys.
15
,
14708
14714
(
2013
).
30.
L. M.
Molina
,
M. D.
Rasmussen
, and
B.
Hammer
, “
Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110)
,”
J. Chem. Phys.
120
,
7673
7680
(
2004
).
31.
A. R.
Puigdollers
,
P.
Schlexer
,
S.
Tosoni
, and
G.
Pacchioni
, “
Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies
,”
ACS Catal.
7
,
6493
6513
(
2017
).
32.
F.
Esch
,
S.
Fabris
,
L.
Zhou
,
T.
Montini
,
C.
Africh
,
P.
Fornasiero
,
G.
Comelli
, and
R.
Rosei
, “
Electron localization determines defect formation on ceria substrates
,”
Science
309
,
752
(
2005
).
33.
Y.
Jin
,
G.
Sun
,
F.
Xiong
,
L.
Ding
, and
W.
Huang
, “
Water-Activated lattice oxygen in FeO(111) islands for low temperature oxidation of CO at Pt−FeO interface
,”
J. Phys. Chem. C
120
,
9845
9851
(
2016
).
34.
J.
Saavedra
,
H. A.
Doan
,
C. J.
Pursell
,
L. C.
Grabow
, and
B. D.
Chandler
, “
The critical role of water at the gold-titania interface in catalytic CO oxidation
,”
Science
345
,
1599
(
2014
).
35.
M. A.
van Spronsen
,
K. J.
Weststrate
, and
L. B. F.
Juurlink
, “
A comparison of CO oxidation by hydroxyl and atomic oxygen from water on low-coordinated Au atoms
,”
ACS Catal.
6
,
7051
7058
(
2016
).
36.
H.
Jeong
,
J.
Bae
,
J. W.
Han
, and
H.
Lee
, “
Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation
,”
ACS Catal.
7
,
7097
7105
(
2017
).
37.
Y.
Sun
,
L.
Giordano
,
J.
Goniakowski
,
M.
Lewandowski
,
Z.
Qin
,
C.
Noguera
,
S.
Shaikhutdinov
,
G.
Pacchioni
, and
H. J.
Freund
, “
The interplay between structure and CO oxidation Catalysis on metal supported ultrathin oxide films
,”
Angew. Chem.
122
,
4418
4421
(
2010
).
38.
K.
Zhang
,
L.
Li
,
S.
Shaikhutdinov
, and
H. J.
Freund
, “
Carbon monoxide oxidation on metal-supported monolayer oxide films: Establishing which interface is active
,”
Angew. Chem., Int. Ed.
57
,
1261
1265
(
2018
).
39.
J.
Saavedra
,
C.
Powell
,
B.
Panthi
,
C. J.
Pursell
, and
B. D.
Chandler
, “
CO oxidation over Au/TiO2 catalyst: Pretreatment effects, catalyst deactivation, and carbonates production
,”
J. Catal.
307
,
37
47
(
2013
).
40.
Y.
Denkwitz
,
Z.
Zhao
,
U.
Hörmann
,
U.
Kaiser
,
V.
Plzak
, and
R. J.
Behm
, “
Stability and deactivation of unconditioned Au/TiO2 catalysts during CO oxidation in a near-stoichiometric and O2-rich reaction atmosphere
,”
J. Catal.
251
,
363
373
(
2007
).
41.
L.
Yu
,
Y.
Liu
,
F.
Yang
,
J.
Evans
,
J. A.
Rodriguez
, and
P.
Liu
, “
CO oxidation on gold-supported iron oxides: New insights into strong oxide-metal interactions
,”
J. Phys. Chem. C
119
,
16614
16622
(
2015
).
42.
W.
Weiss
and
W.
Ranke
, “
Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers
,”
Prog. Surf. Sci.
70
,
1
151
(
2002
).
43.
B.
Qiao
,
A.
Wang
,
X.
Yang
,
L.
Allard
,
Z.
Jiang
,
Y.
Cui
,
J.
Liu
,
J.
Li
, and
T.
Zhang
, “
Single-atom Catalysis of CO oxidation using Pt1/FeOx
,”
Nat. Chem.
3
,
634
641
(
2011
).
44.
Y.
Wang
,
D. C.
Cantu
,
M.
Lee
,
J.
Li
,
V. A.
Glezakou
, and
R.
Rousseau
, “
CO oxidation on Au/TiO2: Condition-dependent active sites and mechanistic pathway
,”
J. Am. Chem. Soc.
138
,
10467
10476
(
2016
).
45.
F.
Tao
,
S.
Dag
,
L.
Wang
,
Z.
Liu
,
D. R.
Butcher
,
H.
Bluhm
,
M.
Salmeron
, and
G. A.
Somorjai
, “
Break-up of stepped platinum catalyst surfaces by high CO coverage
,”
Science
327
,
850
853
(
2010
).
46.
F.
Tao
,
W. T.
Ralston
,
H.
Liu
, and
G. A.
Somorjai
, “
Surface structures of model metal catalysts in reactant gases
,”
J. Phys. Chem. B
122
,
425
431
(
2018
).
47.
M. A.
van Spronsen
,
J. W. M.
Frenken
, and
I. M. N.
Groot
, “
Observing the oxidation of platinum
,”
Nat. Commun.
8
,
429
(
2017
).
48.
F.
Tao
,
D.
Tang
,
M.
Salmeron
, and
G. A.
Somorjai
, “
A new scanning tunneling microscope reactor used for high-pressure and high-temperature Catalysis studies
,”
Rev. Sci. Instrum.
79
,
084101
(
2008
).
49.
F.
Besenbacher
,
P.
Thostrup
, and
M.
Salmeron
, “
The structure and reactivity of surfaces revealed by scanning tunneling microscopy
,”
MRS Bull.
37
,
677
681
(
2012
).
50.
M.
Salmeron
and
R.
Schlögl
, “
Ambient pressure photoelectron spectroscopy: A new tool for surface science and nanotechnology
,”
Surf. Sci. Rep.
63
,
169
199
(
2008
).
51.
J.
Kim
,
M. C.
Noh
,
W. H.
Doh
, and
J. Y.
Park
, “
In situ observation of competitive CO and O2 adsorption on the Pt(111) surface using near-ambient pressure scanning tunneling microscopy
,”
J. Phys. Chem. C
122
,
6246
6254
(
2018
).
52.
V.
Navarro
,
M. A.
van Spronsen
, and
J. W. M.
Frenken
, “
In situ observation of self-assembled hydrocarbon Fischer−Tropsch products on a cobalt catalyst
,”
Nat. Chem.
8
,
929
934
(
2016
).
53.
T.
Niu
,
Z.
Jiang
,
Y.
Zhu
,
G.
Zhou
,
M. A.
van Spronsen
,
S. A.
Tenney
,
J.
Anibal Boscoboinik
, and
D.
Stacchiola
, “
Oxygen-promoted methane activation on copper
,”
J. Phys. Chem. B
122
,
855
863
(
2018
).
54.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allan
,
T. A.
Arias
, and
J. D.
Joannopoulos
, “
Iterative minimization techniques for ab initio total-energy calculations- molecular-dynamics and conjugate gradients
,”
Rev. Mod. Phys.
64
,
1045
1097
(
1992
).
55.
J. P.
Perdew
,
K.
Burke
, and
Y.
Wang
, “
Generalized gradient approximation for the exchange-correlation hole of a many-electron system
,”
Phys. Rev. B
54
,
16533
(
1996
).
56.
H. J.
Kulik
and
N.
Marzari
, “
Transition-metal dioxides: A case for the intersite term in Hubbard-model functionals
,”
J. Chem. Phys.
134
,
094103
(
2011
).
57.
T. A.
Halgren
and
W. N.
Lipscomb
, “
Synchronous-transit method for determining reaction pathways and locating molecular transition-states
,”
Chem. Phys. Lett.
49
,
225
232
(
1977
).
58.
Y.
Li
,
K. C.
Adamsen
,
L.
Lammich
,
J. V.
Lauritsen
, and
S.
Wendt
, “
Atomic-scale view of the oxidation and reduction of supported ultrathin FeO islands
,”
ACS Nano
13
,
11632
11641
(
2019
).
59.
L. R.
Merte
,
Y.
Bai
,
H.
Zeuthen
,
G.
Peng
,
L.
Lammich
,
F.
Besenbacher
,
M.
Mavrikakis
, and
S.
Wendt
, “
Identification of O-rich structures on platinum (111)-supported ultrathin iron oxide films
,”
Surf. Sci.
652
,
261
268
(
2016
).
60.
A. S.
Walton
,
J.
Fester
,
M.
Bajdich
,
M. A.
Arman
,
J.
Osiecki
,
J.
Knudsen
,
A.
Vojvodic
, and
J. V.
Lauritsen
, “
Interface controlled oxidation states in layered cobalt oxide nanoislands on gold
,”
ACS Nano
9
,
2445
2453
(
2015
).
61.
J.
Fester
,
Z.
Sun
,
J.
Rodríguez-Fernandez
,
A.
Walton
, and
J. V.
Lauritsen
, “
Phase transitions of cobalt oxide bilayers on Au(111) and Pt(111): The role of edge sites and substrate interactions
,”
J. Phys. Chem. B
122
,
561
571
(
2018
).
62.
Y.
Sun
,
Z.
Qin
,
M.
Lewandowski
,
E.
Carrasco
,
M.
Sterrer
,
S.
Shaikhutdinov
, and
H. J.
Freund
, “
Monolayer iron oxide film on platinum promotes low temperature CO oxidation
,”
J. Catal.
266
,
359
368
(
2009
).
63.
X.
Deng
and
H.
Tüysüz
, “
Cobalt-oxide-based materials as water oxidation catalyst: Recent progress and challenges
,”
ACS Catal.
4
,
3701
3714
(
2014
).
64.
J.
Fester
,
M.
Bajdich
,
A. S.
Walton
,
Z.
Sun
,
P. N.
Plessow
,
A.
Vojvodic
, and
J. V.
Lauritsen
, “
Comparative analysis of cobalt oxide nanoisland stability and edge structures on three related noble metal surfaces: Au (111), Pt (111) and Ag (111)
,”
Top. Catal.
60
,
503
512
(
2017
).
65.
Y.
Liu
,
F.
Yang
,
Y.
Zhang
,
J.
Xiao
,
L.
Yu
,
Q.
Liu
,
Y.
Ning
,
Z.
Zhou
,
H.
Chen
,
W.
Huang
,
P.
Liu
, and
X.
Bao
, “
Enhanced oxidation resistance of active nanostructures via dynamic size effect
,”
Nat. Commun.
8
,
14459
(
2017
).
66.
M.
Muhler
,
R.
Schlogl
, and
G.
Ertl
, “
The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface Chemistry of the active phase
,”
J. Catal.
138
,
413
(
1992
).
67.
R.
Bliem
,
J.
van der Hoeven
,
A.
Zavodny
,
O.
Gamba
,
J.
Pavelec
,
P. E.
de Jongh
,
M.
Schmid
,
U.
Diebold
, and
G. S.
Parkinson
, “
An atomic-scale view of CO and H2 oxidation on a Pt/Fe3O4 model catalyst
,”
Angew. Chem., Int. Ed.
54
,
13999
14002
(
2015
).
68.
T.
Fujii
,
F. M. F.
de Groot
,
G. A.
Sawatzky
,
F. C.
Voogt
,
T.
Hibma
, and
K.
Okada
, “
In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy
,”
Phys. Rev. B
59
,
3195
3202
(
1999
).
69.
E.
de Smit
,
M. M.
van Schooneveld
,
F.
Cinquini
,
H.
Bluhm
,
P.
Sautet
,
F. M. F.
de Groot
, and
B. M.
Weckhuysen
, “
On the surface chemistry of iron oxides in reactive gas atmospheres
,”
Angew. Chem., Int. Ed.
50
,
1584
1588
(
2011
).
70.
Z.
Duan
and
G.
Henkelman
, “
Calculations of CO oxidation over a Au/TiO2 catalyst: A study of active sites, catalyst deactivation, and moisture effects
,”
ACS Catal.
8
,
1376
1383
(
2018
).
71.
H.
Zhong
,
L.
Wen
,
J.
Li
,
J.
Xu
,
M.
Hua
, and
Z.
Yang
, “
The adsorption behaviors of CO and H2 on FeO surface: A density functional theory study
,”
Powder Technol.
303
,
100
108
(
2016
).
72.
J.
Yoo
,
X.
Rong
,
Y.
Liu
, and
A. M.
Kolpak
, “
Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites
,”
ACS Catal.
8
,
4628
4636
(
2018
).
73.
A.
Grimaud
,
O.
Diaz-Morales
,
B.
Han
,
W. T.
Hong
,
Y. L.
Lee
,
L.
Giordano
,
K. A.
Stoerzinger
,
M. T. M.
Koper
, and
S. H.
Yang
, “
Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution
,”
Nat. Chem.
9
,
457
465
(
2017
).
74.
A. D.
Allian
,
K.
Takanabe
,
K. L.
Fujdala
,
X.
Hao
,
T. J.
Truex
,
J.
Cai
,
C.
Buda
,
M.
Neurock
, and
E.
Iglesia
, “
Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters
,”
J. Am. Chem. Soc.
133
,
4498
4517
(
2011
).
75.
H. Y.
Kim
and
G.
Henkelman
, “
CO oxidation at the interface of Au nanoclusters and the stepped-CeO2(111) surface by the Mars–van Krevelen mechanism
,”
J. Phys. Chem. Lett.
4
,
216
221
(
2013
).

Supplementary Material

You do not currently have access to this content.