Hydrogenation of TiO2 enhances its visible photoabsorption, leading to efficient photocatalytic activity. However, the role of hydrogen has not been fully understood. The anatase TiO2(101) surface treated by hydrogen ion irradiation at 500 eV was investigated by photoemission spectroscopy and nuclear reaction analysis. Hydrogen irradiation induces an in-gap state 1–1.6 eV below the Fermi level and a downward band bending of 0.27 eV. The H depth profile at 300 K shows a surface peak with an H amount of (2.9 ± 0.3) × 1015 cm−2 with little concentration in a deeper region. At 200 K, on the other hand, the H depth profile shows a maximum at about 1 nm below the surface corresponding to an H amount of (6.1 ± 0.3) × 1015 cm−2 along with a broad distribution extending to 50 nm at an average concentration of 0.8 at. %. These results show that H diffusion in anatase TiO2 is much faster than in rutile TiO2 [Y. Ohashi, J. Phys. Chem. C 123, 10319–10324 (2019)]. The H diffusion coefficient at 200 K is determined to be 2.7 ± 0.1 × 10−13 m2 s−1.

1.
A. L.
Linsebigler
,
G.
Lu
, and
J. T.
Yates
, “
Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results
,”
Chem. Rev.
95
,
735
758
(
1995
).
2.
G. E.
Brown
,
V. E.
Henrich
,
W. H.
Casey
,
D. L.
Clark
,
C.
Eggleston
,
A.
Felmy
,
D. W.
Goodman
,
M.
Grätzel
,
G.
Maciel
,
M. I.
McCarthy
,
K. H.
Nealson
,
D. A.
Sverjensky
,
M. F.
Toney
, and
J. M.
Zachara
, “
Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms
,”
Chem. Rev.
99
,
77
174
(
1999
).
3.
U.
Diebold
, “
The surface science of titanium dioxide
,”
Surf. Sci. Rep.
48
,
53
229
(
2003
).
4.
A.
Kudo
and
Y.
Miseki
, “
Heterogeneous photocatalyst materials for water splitting
,”
Chem. Soc. Rev.
38
,
253
278
(
2009
).
5.
C.
Lun Pang
,
R.
Lindsay
, and
G.
Thornton
, “
Chemical reactions on rutile TiO2(110)
,”
Chem. Soc. Rev.
37
,
2328
2353
(
2008
).
6.
C.
Lun Pang
,
R.
Lindsay
, and
G.
Thornton
, “
Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces
,”
Chem. Rev.
113
,
3887
3948
(
2013
).
7.
O. K.
Varghese
,
D.
Gong
,
M.
Paulose
,
K. G.
Ong
, and
C. A.
Grimes
, “
Hydrogen sensing using titania nanotubes
,”
Sens. Actuators, B
93
,
338
344
(
2003
).
8.
K.
Fukada
,
M.
Matsumoto
,
K.
Takeyasu
,
S.
Ogura
, and
K.
Fukutani
, “
Effects of hydrogen on the electronic state and electric conductivity of the rutile TiO2(110) surface
,”
J. Phys. Soc. Jpn.
84
,
64716
(
2015
).
9.
Z.
Wu
,
W.
Zhang
,
F.
Xiong
,
Q.
Yuan
,
Y.
Jin
,
J.
Yang
, and
W.
Huang
, “
Active hydrogen species on TiO2 for photocatalytic H2 production
,”
Phys. Chem. Chem. Phys.
16
,
7051
(
2014
).
10.
A.
Sclafani
and
J. M.
Herrmann
, “
Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions
,”
J. Phys. Chem.
100
,
13655
13661
(
1996
).
11.
Y.
Furubayashi
,
T.
Hitosugi
,
Y.
Yamamoto
,
K.
Inaba
,
G.
Kinoda
,
Y.
Hirose
,
T.
Shimada
, and
T.
Hasegawa
, “
A transparent metal: Nb-doped anatase TiO2
,”
Appl. Phys. Lett.
86
,
252101
(
2005
).
12.
C.
Sun
,
Y.
Jia
,
X.-H.
Yang
,
H.-G.
Yang
,
X.
Yao
,
G. Q. M.
Lu
,
A.
Selloni
, and
S. C.
Smith
, “
Hydrogen incorporation and storage in well-defined nanocrystals of anatase titanium dioxide
,”
J. Phys. Chem. C
115
,
25590
25594
(
2011
).
13.
X.
Chen
,
L.
Liu
,
P. Y.
Yu
, and
S. S.
Mao
, “
Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals
,”
Science
331
,
746
750
(
2011
).
14.
Z.
Wang
,
C.
Yang
,
T.
Lin
,
H.
Yin
,
P.
Chen
,
D.
Wan
,
F.
Xu
,
F.
Huang
,
J.
Lin
,
X.
Xie
, and
M.
Jiang
, “
H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance
,”
Adv. Funct. Mater.
23
,
5444
5450
(
2013
).
15.
X.
Liu
,
G.
Zhu
,
X.
Wang
,
X.
Yuan
,
T.
Lin
, and
F.
Huang
, “
Progress in black titania: A new material for advanced photocatalysis
,”
Adv. Energy Mater.
6
,
1600452
(
2016
).
16.
X.
Chen
,
L.
Liu
,
P. Y.
Yu
,
Z.
Liu
,
M. A.
Marcus
,
W.-C.
Wang
,
N. A.
Oyler
,
M. E.
Grass
,
B.
Mao
,
P.-A.
Glans
,
P. Y.
Yu
,
J.
Guo
, and
S. S.
Mao
, “
Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation
,”
Sci. Rep.
3
,
1510
(
2013
).
17.
L.
Liu
,
P. Y.
Yu
,
X.
Chen
,
S. S.
Mao
, and
D. Z.
Shen
, “
Hydrogenation and disorder in engineered black TiO2
,”
Phys. Rev. Lett.
111
,
065505
(
2013
).
18.
S.
Suzuki
,
K.-I.
Fukui
,
H.
Onishi
, and
Y.
Iwasawa
, “
Hydrogen adatoms on TiO2(110) (1 × 1) characterized by scanning tunneling microscopy and electron stimulated desorption
,”
Phys. Rev. Lett.
84
,
2156
2159
(
2000
).
19.
M.
Kunat
,
U.
Burghaus
, and
C.
Wöll
, “
The adsorption of hydrogen on the rutile TiO2(110) surface
,”
Phys. Chem. Chem. Phys.
6
,
4203
4207
(
2004
).
20.
X.-L.
Yin
,
M.
Calatayud
,
H.
Qiu
,
Y.
Wang
,
A.
Birkner
,
C.
Minot
, and
C.
Wöll
, “
Diffusion versus desorption: Complex behavior of h atoms on an oxide surface
,”
ChemPhysChem
9
,
253
256
(
2008
).
21.
X.
Mao
,
X.
Lang
,
Z.
Wang
,
Q.
Hao
,
B.
Wen
,
Z.
Ren
,
D.
Dai
,
C.
Zhou
,
L.-M.
Liu
, and
X.
Yang
, “
Band-gap states of TiO2(110): Major contribution from surface defects
,”
J. Phys. Chem. Lett.
4
,
3839
3844
(
2013
).
22.
F.
Filippone
,
G.
Mattioli
,
P.
Alippi
, and
A.
Amore Bonapasta
, “
Properties of hydrogen and hydrogen–vacancy complexes in the rutile phase of titanium dioxide
,”
Phys. Rev. B
80
,
245203
(
2009
).
23.
Z.
Tian
,
H.
Cui
,
G.
Zhu
,
W.
Zhao
,
J.
Xu
,
F.
Shao
,
J.
He
, and
F.
Huang
, “
Hydrogen plasma reduced black TiO2–B nanowires for enhanced photoelectrochemical water-splitting
,”
J. Power Sources
325
,
697
705
(
2016
).
24.
M. I.
Nandasiri
,
V.
Shutthanandan
,
S.
Manandhar
,
A. M.
Schwarz
,
L.
Oxenford
,
J. V.
Kennedy
,
S.
Thevuthasan
, and
M. A.
Henderson
, “
Instability of hydrogenated TiO2
,”
J. Phys. Chem. Lett.
6
,
4627
4632
(
2015
).
25.
Y.
Ohashi
,
N.
Nagatsuka
,
S.
Ogura
, and
K.
Fukutani
, “
Hydrogen distribution and electronic structure of TiO2(110) hydrogenated with low-energy hydrogen ions
,”
J. Phys. Chem. C
123
,
10319
10324
(
2019
).
26.
T. C.
Rödel
,
F.
Fortuna
,
F.
Bertran
,
M.
Gabay
,
M. J.
Rozenberg
,
A. F.
Santander-Syro
, and
P.
Le Fèvre
, “
Engineering two-dimensional electron gases at the (001) and (101) surfaces of TiO2 anatase using light
,”
Phys. Rev. B
92
,
041106
(
2015
).
27.
N.
Nagatsuka
,
K.
Kato
,
M.
Wilde
,
S.
Ogura
, and
K.
Fukutani
, “
Polarons controls proton diffusion at TiO2 surfaces
” (submitted) (
2019
).
28.
G.
Caskey
, “
Diffusion of tritium in rutile (TiO2)
,”
Mater. Sci. Eng.
14
,
109
114
(
1974
).
29.
O. W.
Johnson
,
S.
Paek
, and
J. W.
DeFord
, “
Diffusion of H and D in TiO2: Suppression of internal fields by isotope exchange
,”
J. Appl. Phys.
46
,
1026
1033
(
1975
).
30.
J. V.
Cathcart
,
R. A.
Perkins
,
J. B.
Bates
, and
L. C.
Manley
, “
Tritium diffusion in rutile (TiO2)
,”
J. Appl. Phys.
50
,
4110
4119
(
1979
).
31.
Y.
Chen
,
R.
Gonzalez
, and
K. L.
Tsang
, “
Diffusion of deuterium and hydrogen in rutile TiO2 crystals at low temperatures
,”
Phys. Rev. Lett.
53
,
1077
1079
(
1984
).
32.
E. J.
Spahr
,
L.
Wen
,
M.
Stavola
,
L. A.
Boatner
,
L. C.
Feldman
,
N. H.
Tolk
, and
G.
Lüpke
, “
Giant enhancement of hydrogen transport in rutile TiO2 at low temperatures
,”
Phys. Rev. Lett.
104
,
205901
(
2010
).
33.
A. J.
Hupfer
,
E. V.
Monakhov
,
B. G.
Svensson
,
B. G.
Svensson
,
J.
Chen
,
I.
Chaplygin
, and
E. V.
Lavrov
, “
Hydrogen motion in rutile TiO2
,”
Sci. Rep.
7
,
17065
(
2017
).
34.
W.
Mao
,
M.
Wilde
,
S.
Ogura
,
J.
Chen
,
K.
Fukutani
,
H.
Matsuzaki
, and
T.
Terai
, “
Hydrogen-accelerated phase transition and diffusion in TiO2 thin films
,”
J. Phys. Chem. C
122
,
23026
23033
(
2018
).
35.
K.
Fukutani
, “
Below-surface behavior of hydrogen studied by nuclear reaction analysis
,”
Curr. Opin. Solid State Mater. Sci.
6
,
153
161
(
2002
).
36.
M.
Wilde
and
K.
Fukutani
, “
Hydrogen detection near surfaces and shallow interfaces with resonant nuclear reaction analysis
,”
Surf. Sci. Rep.
69
,
196
295
(
2014
).
37.
Z.
Zhang
and
J. T.
Yates
, “
Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces
,”
Chem. Rev.
112
,
5520
5551
(
2012
).
38.
C. M.
Yim
,
C. L.
Pang
, and
G.
Thornton
, “
Oxygen vacancy origin of the surface band-gap state of TiO2(110)
,”
Phys. Rev. Lett.
104
,
036806
(
2010
).
39.
M.
Setvin
,
X.
Hao
,
B.
Daniel
,
J.
Pavelec
,
Z.
Novotny
,
G. S.
Parkinson
,
M.
Schmid
,
G.
Kresse
,
C.
Franchini
, and
U.
Diebold
, “
Charge trapping at the step edges of TiO2 anatase (101)
,”
Angew. Chem., Int. Ed.
53
,
4714
4716
(
2014
).
40.
A.
Naldoni
,
M.
Allieta
,
S.
Santangelo
,
M.
Marelli
,
F.
Fabbri
,
S.
Cappelli
,
C. L.
Bianchi
,
R.
Psaro
, and
V.
Dal Santo
, “
Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles
,”
J. Am. Chem. Soc.
134
,
7600
7603
(
2012
).
41.
W.
Göpel
,
J. A.
Anderson
,
D.
Frankel
,
M.
Jaehnig
,
K.
Phillips
,
J. A.
Schäfer
, and
G.
Rocker
, “
Surface defects of TiO2(110): A combined XPS, XAES and ELS study
,”
Surf. Sci.
139
,
333
346
(
1984
).
42.
T.
Sham
and
M.
Lazarus
, “
X-ray photoelectron spectroscopy (XPS) studies of clean and hydrated TiO2 (rutile) surfaces
,”
Chem. Phys. Lett.
68
,
426
432
(
1979
).
43.
W.
Göpel
,
G.
Rocker
, and
R.
Feierabend
, “
Intrinsic defects of TiO2(110): Interaction with chemisorbed O2, H2, CO, and CO2
,”
Phys. Rev. B
28
,
3427
3438
(
1983
).
You do not currently have access to this content.