Plasmonic nanoholes have attracted significant attention among nanoplasmonic devices, especially as biosensing platforms, where nanohole arrays can efficiently enhance and confine the electromagnetic field through surface plasmon polaritons, providing a sensitive detection. In nanohole arrays, the optical resonances are typically determined by the inter-hole distance or periodicity with respect to the surface plasmon wavelength. However, for short-range ordered (SRO) arrays, the inter-hole distance varies locally, so the plasmon resonance changes. In this study, we investigate the local resonance of SRO nanoholes using a cathodoluminescence technique and compare it with hexagonally ordered nanoholes. The cathodoluminescence photon maps and resonance peak analysis reveal that the electric fields are confined at the edges of holes and that their resonances are determined by inter-hole distances as well as by their distributions. This demonstrates the Anderson localization of the electromagnetic waves showing locally enhanced electromagnetic local density of states in SRO nanoholes.

1.
T.
Matsui
,
A.
Agrawal
,
A.
Nahata
, and
Z. V.
Vardeny
,
Nature
446
(
7135
),
517
521
(
2007
).
2.
T.
Sannomiya
,
O.
Scholder
,
K.
Jefimovs
,
C.
Hafner
, and
A. B.
Dahlin
,
Small
7
(
12
),
1653
1663
(
2011
).
3.
D.
Maystre
, “
Survey of surface plasmon polariton history
,” in
Plasmonics from Basics to Advanced Topics
, edited by
S.
Enoch
and
N.
Bonod
(
Springer-Verlag Berlin Heidelberg
,
New York
,
2012
), pp.
3
37
.
4.
K.
Gu
,
H.
Peng
,
S.
Hua
,
Y.
Qu
, and
D.
Yang
,
Nanomaterials
9
(
5
),
770
(
2019
).
5.
Y.
Alaverdyan
,
B.
Sepúlveda
,
L.
Eurenius
,
E.
Olsson
, and
M.
Käll
,
Nat. Phys.
3
(
12
),
884
889
(
2007
).
6.
C.
Genet
,
M. P. v.
Exter
, and
J. P.
Woerdman
,
Opt. Commun.
225
(
4-6
),
331
336
(
2003
).
7.
H. F.
Ghaemi
,
T.
Thio
,
D. E.
Grupp
,
T. W.
Ebbesen
, and
H. J.
Lezec
,
Phys. Rev. B
58
(
11
),
6779
(
1998
).
8.
T.
Ohno
,
C.
Wadell
,
S.
Inagaki
,
J.
Shi
,
Y.
Nakamura
,
S.
Matsushita
, and
T.
Sannomiya
,
Opt. Mater. Express
6
(
5
),
1594
1603
(
2016
).
9.
C.
Wadell
,
S.
Inagaki
,
T.
Nakamura
,
J.
Shi
,
Y.
Nakamura
, and
T.
Sannomiya
,
Am. Chem. Soc. Nano
11
(
2
),
1264
1272
(
2017
).
10.
A. B.
Dahlin
,
Analyst
140
(
14
),
4748
4759
(
2015
).
11.
W. B.
Shi
,
L. Z.
Liu
,
R.
Peng
,
D. H.
Xu
,
K.
Zhang
,
H.
Jing
,
R. H.
Fan
,
X. R.
Huang
,
Q. J.
Wang
, and
M.
Wang
,
Nano Lett.
18
(
3
),
1896
1902
(
2018
).
12.
Z.
Mai
,
F.
Lin
,
W.
Pang
,
H.
Xu
,
S.
Tan
,
S.
Fu
, and
Y.
Li
,
Opt. Express
24
(
12
),
13210
13219
(
2016
).
13.
J.
Liu
,
P. D.
Garcia
,
S.
Ek
,
N.
Gregersen
,
T.
Suhr
,
M.
Schubert
,
J.
Mork
,
S.
Stobbe
, and
P.
Lodahl
,
Nat. Nanotechnol.
9
(
4
),
285
289
(
2014
).
14.
S. J.
Kwon
,
G. Y.
Lee
,
K.
Jung
,
H. S.
Jang
,
J. S.
Park
,
H.
Ju
,
I. K.
Han
, and
H.
Ko
,
Adv. Mater.
28
(
36
),
7899
7909
(
2016
).
15.
M.
Balasubrahmaniyam
,
A.
Nahata
, and
S.
Mujumdar
,
Phys. Rev. B
98
(
2
),
024202
(
2018
).
16.
P. E.
Wolf
and
G.
Maret
,
Phys. Rev. Lett.
55
(
24
),
2696
2699
(
1985
).
17.
J.
Billy
,
V.
Josse
,
Z.
Zuo
,
A.
Bernard
,
B.
Hambrecht
,
P.
Lugan
,
D.
Clement
,
L.
Sanchez-Palencia
,
P.
Bouyer
, and
A.
Aspect
,
Nature
453
(
7197
),
891
894
(
2008
).
18.
G.
Roati
,
C.
D’Errico
,
L.
Fallani
,
M.
Fattori
,
C.
Fort
,
M.
Zaccanti
,
G.
Modugno
,
M.
Modugno
, and
M.
Inguscio
,
Nature
453
(
7197
),
895
898
(
2008
).
19.
J.
Junesch
and
T.
Sannomiya
,
ACS Appl. Mater. Interfaces
6
(
9
),
6322
6331
(
2014
).
20.
F.
Przybilla
,
C.
Genet
, and
T. W.
Ebbesen
,
Opt. Express
20
(
4
),
4697
4709
(
2012
).
21.
M.
Kociak
and
O.
Stéphana
,
Chem. Soc. Rev.
43
(
11
),
3865
(
2014
).
22.
F. J.
García de Abajo
,
Rev. Mod. Phys.
82
(
1
),
209
275
(
2010
).
23.
D. S.
Wiersma
,
P.
Bartolini
,
A.
Lagendijk
, and
R.
Righini
,
Nature
390
(
6661
),
671
673
(
1997
).
24.
M.
Leonetti
,
S.
Karbasi
,
A.
Mafi
, and
C.
Conti
,
Phys. Rev. Lett.
112
(
19
),
193902
(
2014
).
25.
T.
Sannomiya
,
H.
Saito
,
J.
Junesch
, and
N.
Yamamoto
,
Light Sci. Appl.
5
(
9
),
e16146
(
2016
).
26.
N.
Yamamoto
, “
Cathodoluminescence of surface plasmon induced light emission
,” in
The Transmission Electron Microscope
, edited by
K.
Maaz
(
InTechOpen
,
London
,
2012
), pp.
1836
2281
.
27.
N.
Yamamoto
and
T.
Suzuki
,
Appl. Phys. Lett.
93
(
9
),
093114
(
2008
).
28.
R. H.
Ritchie
,
Phys. Rev.
106
(
5
),
874
881
(
1957
).
29.
N.
Yamamoto
,
Microscopy
65
(
4
),
282
295
(
2016
).
30.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
(
12
),
4370
4379
(
1972
).
31.
A.
Losquin
and
M.
Kociak
,
ACS Photonics
2
(
11
),
1619
1627
(
2015
).
32.
E. S. H.
Kang
,
H.
Ekinge
, and
M. P.
Jonsson
,
Opt. Mater. Express
9
(
3
),
1404
(
2019
).
33.
H.
Saito
and
N.
Yamamoto
,
Opt. Express
23
(
3
),
2524
2540
(
2015
).
34.
Y.
Ikenoya
,
M.
Susa
,
J.
Shi
,
Y.
Nakamura
,
A. B.
Dahlin
, and
T.
Sannomiya
,
J. Phys. Chem. C
117
(
12
),
6373
6382
(
2013
).
35.
J.
Prikulis
,
P.
Hanarp
,
L.
Olofsson
,
D.
Sutherland
, and
M.
Ka
,
Nano Lett.
4
(
6
),
1003
1007
(
2004
).
36.
D. Y.
Lei
,
J.
Li
,
A. I.
Fernández-Domínguez
,
H. C.
Ong
, and
S. A.
Maier
,
ACS Nano
4
(
1
),
432
438
(
2010
).
37.
T. M.
Schmidt
,
M.
Frederiksen
,
V.
Bochenkov
, and
D. S.
Sutherland
,
Beilstein J. Nanotechnol.
6
,
1
10
(
2015
).
38.
H.
Saito
,
N.
Yamamoto
, and
T.
Sannomiya
,
ACS Photonics
4
(
6
),
1361
1370
(
2017
).
39.
H.
Saito
and
N.
Yamamoto
,
Nano Lett.
15
(
9
),
5764
5769
(
2015
).

Supplementary Material

You do not currently have access to this content.