We extend the statistical associating fluid theory of quantum corrected Mie potentials (SAFT-VRQ Mie), previously developed for pure fluids [Aasen et al., J. Chem. Phys. 151, 064508 (2019)], to fluid mixtures. In this model, particles interact via Mie potentials with Feynman–Hibbs quantum corrections of first order (Mie-FH1) or second order (Mie-FH2). This is done using a third-order Barker–Henderson expansion of the Helmholtz energy from a non-additive hard-sphere reference system. We survey existing experimental measurements and ab initio calculations of thermodynamic properties of mixtures of neon, helium, deuterium, and hydrogen and use them to optimize the Mie-FH1 and Mie-FH2 force fields for binary interactions. Simulations employing the optimized force fields are shown to follow the experimental results closely over the entire phase envelopes. SAFT-VRQ Mie reproduces results from simulations employing these force fields, with the exception of near-critical states for mixtures containing helium. This breakdown is explained in terms of the extremely low dispersive energy of helium and the challenges inherent in current implementations of the Barker–Henderson expansion for mixtures. The interaction parameters of two cubic equations of state (Soave–Redlich–Kwong and Peng–Robinson) are also fitted to experiments and used as performance benchmarks. There are large gaps in the ranges and properties that have been experimentally measured for these systems, making the force fields presented especially useful.

1.
A.
Aasen
,
M.
Hammer
,
Å.
Ervik
,
E. A.
Müller
, and
Ø.
Wilhelmsen
,
J. Chem. Phys.
151
,
064508
(
2019
).
2.
T.
Lafitte
,
A.
Apostolakou
,
C.
Avendaño
,
A.
Galindo
,
C. S.
Adjiman
,
E. A.
Müller
, and
G.
Jackson
,
J. Chem. Phys.
139
,
154504
(
2013
).
3.
U.
Cardella
,
L.
Decker
, and
H.
Klein
,
IOP Conf. Ser.: Mater. Sci. Eng.
171
,
012013
(
2017
).
4.
Ø.
Wilhelmsen
,
D.
Berstad
,
A.
Aasen
,
P.
Nekså
, and
G.
Skaugen
,
Int. J. Hydrogen Energy
43
,
5033
(
2018
).
5.
R.
Albert
,
C.
Goodzeit
,
F.
Pechar
, and
A.
Prodell
,
Advances in Cryogenic Engineering
(
Springer
,
1966
), pp.
321
327
.
6.
D.
Güsewell
,
F.
Schmeissner
, and
J.
Schmid
,
Cryogenics
10
,
150
(
1970
).
7.
S.
Satyapal
,
J.
Petrovic
,
C.
Read
,
G.
Thomas
, and
G.
Ordaz
,
Catal. Today
120
,
246
256
(
2007
).
8.
R. J.
Stochl
,
J. E.
Maloy
,
P. A.
Masters
, and
R. L.
DeWitt
, “
Gaseous-helium requirements for the discharge of liquid hydrogen from a 3.96-meter (13-ft) diameter spherical tank
,” Technical Report No. TN D-7019,
NASA
,
Cleveland, OH, USA
,
1970
.
10.
D. Y.
Peng
and
D. B.
Robinson
,
Ind. Eng. Chem. Fund.
15
,
59
(
1976
).
11.
M.-J.
Huron
and
J.
Vidal
,
Fluid Phase Equilib.
3
,
255
(
1979
).
12.
O.
Jørstad
, “
Equations of state for hydrocarbon mixtures
,” Ph.D. dissertation (
Norwegian Institute of Technology (NTH)
,
1993
).
13.
J.
Gross
and
G.
Sadowski
,
Ind. Eng. Chem. Res.
40
,
1244
(
2001
).
14.
D. O.
Ortiz-Vega
, “
A new wide range equation of state for helium-4
,” Ph.D. thesis,
Texas A&M University
,
2013
.
15.
R.
Katti
,
R.
Jacobsen
,
R.
Stewart
, and
M.
Jahangiri
,
Adv. Cryog. Eng.
31
,
1189
(
1986
).
16.
J. W.
Leachman
,
R. T.
Jacobsen
,
S. G.
Penoncello
, and
E. W.
Lemmon
,
J. Phys. Chem. Ref. Data
38
,
721
(
2009
).
17.
I. A.
Richardson
,
J. W.
Leachman
, and
E. W.
Lemmon
,
J. Phys. Chem. Ref. Data
43
,
013103
(
2014
).
18.
R.
Span
,
Multiparameter Equations of State
(
Springer-Verlag
,
Berlin
,
2000
).
19.
Ø.
Wilhelmsen
,
A.
Aasen
,
G.
Skaugen
,
P.
Aursand
,
A.
Austegard
,
E.
Aursand
,
M. A.
Gjennestad
,
H.
Lund
,
G.
Linga
, and
M.
Hammer
,
Ind. Eng. Chem. Res.
56
,
3503
(
2017
).
20.
P. J.
Leonard
,
D.
Henderson
, and
J. A.
Barker
,
Trans. Faraday Soc.
66
,
2439
(
1970
).
21.
Ø.
Wilhelmsen
,
T. T.
Trinh
,
A.
Lervik
,
V. K.
Badam
,
S.
Kjelstrup
, and
D.
Bedeaux
,
Phys. Rev. E
93
,
032801
(
2016
).
22.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
2856
(
1967
).
23.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
4714
(
1967
).
24.
E. A.
Müller
and
K. E.
Gubbins
,
Ind. Eng. Chem. Res.
40
,
2193
(
2001
).
25.
P.
Paricaud
,
A.
Galindo
, and
G.
Jackson
, in
Proceedings of the Ninth International Conference on Properties and Phase Equilibria for Product and Process Design
[
Fluid Phase Equilib.
194-197
,
87
(
2002
)].
26.
E. A.
Müller
and
G.
Jackson
,
Annu. Rev. Chem. Biomol. Eng.
5
,
405
(
2014
).
27.
S. A.
Febra
,
A.
Aasen
,
C. S.
Adjiman
,
G.
Jackson
, and
A.
Galindo
,
Mol. Phys.
117
,
3884
(
2019
).
28.
S.
Dufal
,
T.
Lafitte
,
A.
Galindo
,
G.
Jackson
, and
A. J.
Haslam
,
AIChE J.
61
,
2891
(
2015
).
29.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
).
30.
A.
Gil-Villegas
,
A.
Galindo
,
P. J.
Whiteheat
,
S. J.
Mills
, and
G.
Jackson
,
J. Comput. Phys.
106
,
4168
(
1997
).
31.
A.
Santos
,
M.
Loópes de Haro
, and
S. B.
Yustec
,
J. Chem. Phys.
122
,
024514
(
2005
).
32.
A.
Mulero
,
Theory and Simulation of Hard-Sphere Fluids and Related Systems
(
Springer
,
Berlin
,
2008
), ISBN: 9783540787662.
33.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
34.
D. A.
McQuarrie
,
Statistical Mechanics
(
Harper & Row
,
New York
,
1976
).
35.
G.
Garberoglio
and
A. H.
Harvey
,
Int. J. Thermophys.
34
,
385
(
2013
).
36.
G.
Garberoglio
,
K.
Patkowski
, and
A. H.
Harvey
,
Int. J. Thermophys.
35
,
1435
(
2014
).
37.
A.
Péneloux
,
E.
Rauzy
, and
R.
Fréze
,
Fluid Phase Equilib.
8
,
7
(
1982
).
38.
G. M.
Kontogeorgis
and
G.
Folas
,
Thermodynamic Models for Industrial Applications
(
Wiley
,
2010
).
39.
A.
Aasen
,
M.
Hammer
,
G.
Skaugen
,
J.
Jakobsen
, and
Ø.
Wilhelmsen
,
Fluid Phase Equilib.
442
,
125
(
2017
).
40.
A.
Panagiotopoulos
,
N.
Quirke
,
M.
Stapleton
, and
D.
Tildesley
,
Mol. Phys.
63
,
527
(
1988
).
41.
M.
Allen
and
D.
Tildesley
,
Computer Simulation of Liquids
, 2nd ed. (
Oxford University Press
,
New York
,
2017
).
42.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
New York
,
2002
).
43.
J.
Brewer
and
G.
Vaughn
,
J. Chem. Phys.
50
,
2960
(
1969
).
44.
W.
Streett
,
Astrophys. J.
186
,
1107
(
1973
).
45.
46.
T.
Yamanishi
,
K.
Okuno
,
Y.
Naruse
, and
E.
Sada
,
J. Phys. Chem.
96
,
2284
(
1992
).
47.
A.
Kidnay
,
M.
Hiza
, and
R.
Miller
,
Cryogenics
13
,
575
(
1973
).
48.
P. H. v.
Konynenburg
and
R. L.
Scott
,
Philos. Trans. R. Soc., A
298
,
495
(
1980
).
49.
M.
Cismondi
and
M. L.
Michelsen
,
J. Supercrit. Fluids
39
,
287
(
2007
).
50.
M.
Cismondi
,
M. L.
Michelsen
, and
M. S.
Zabaloy
,
Ind. Eng. Chem. Res.
47
,
9728
(
2008
).
52.
C.
Heck
and
P.
Barrick
,
Advances in Cryogenic Engineering
(
Springer
,
1967
), pp.
714
718
.
53.
M.
Hammer
,
A.
Aasen
,
Å.
Ervik
, and
Ø.
Wilhelmsen
, “
Choice of reference, the influence of non-additivity and challenges in thermodynamic perturbation theory for mixtures
,”
J. Chem. Phys.
(submitted) (
2020
).
54.
W. B.
Streett
and
C. H.
Jones
,
J. Chem. Phys.
42
,
3989
(
1965
).
55.
C. K.
Heck
and
P.
Barrick
,
Advances in Cryogenic Engineering
(
Springer
,
1966
), pp.
349
355
.
57.
W. B.
Streett
,
R. E.
Sonntag
, and
G. J.
Van Wylen
,
J. Chem. Phys.
40
,
1390
(
1964
).
58.
R. E.
Sonntag
,
G. J.
Van Wylen
, and
R. W.
Crain
,
J. Chem. Phys.
41
,
2399
(
1964
).
59.
C. M.
Sneed
,
R. E.
Sonntag
, and
G. J.
Van Wylen
,
J. Chem. Phys.
49
,
2410
(
1968
).
61.
W.
Streett
, in
Proceedings of the Second International Cryogenic Engineering Conference
(
Iliffe Science and Technology Publ. Ltd.
,
Guildford, England
,
1968
), pp.
260
263
.
62.
H.
Hoge
and
R.
Arnold
,
J. Res. Natl. Bur. Stand.
47
,
63
(
1951
).
63.
R.
Newman
and
L. C.
Jackson
,
Trans. Faraday Soc.
54
,
481
(
1958
).
64.
A.
Treviño
,
Rev. Mex. Fis.
4
,
23
(
1955
).
65.
Y.
Le Guennec
,
S.
Lasala
,
R.
Privat
, and
J.-N.
Jaubert
,
Fluid Phase Equilib.
427
,
513
(
2016
).
66.
F. R.
McCourt
,
D.
Weir
,
C.
Gregory B.
, and
M.
Thachuk
,
Mol. Phys.
103
,
17
(
2005
).
67.
F. R. W.
Mccourt
,
D.
Weir
,
M.
Thachuk
, and
G. B.
Clark
,
Mol. Phys.
103
,
45
(
2005
).

Supplementary Material

You do not currently have access to this content.