The equation of state, dynamical properties, and molecular-scale structure of squalane and mixtures of poly-α-olefins at room temperature are studied with a combination of state-of-the-art, high-pressure experiments and molecular-dynamics simulations. Diamond-anvil cell experiments indicate that both materials are non-hydrostatic media at pressures above ∼1 GPa. The equation of state does not exhibit any sign of a first-order phase transition. High-pressure x-ray diffraction experiments on squalane show that there are no Bragg peaks, and hence, the apparent solidification occurs without crystallization. These observations are complemented by a survey of the equation of state and dynamical properties using simulations. The results show that molecular diffusion is essentially arrested above about 1 GPa, which supports the hypothesis that the samples are kinetically trapped in metastable amorphous-solid states. The shear viscosity becomes extremely large at very high pressures, and the coefficient governing its increase from ambient pressure is in good agreement with the available literature data. Finally, simulated radial distribution functions are used to explore the evolution of the molecular-scale structure with increasing pressure. Subtle changes in the short-range real-space correlations are related to a collapse of the molecular conformations with increasing pressure, while the evolution of the static structure factor shows excellent correlation with the available x-ray diffraction data. These results are of indirect relevance to oil-based lubricants, as the pressures involved are comparable to those found in engines, and hence, the ability of lubricating thin films to act as load-bearing media can be linked to the solidification phenomena studied in this work.

1.
R. A.
Mufti
and
M.
Priest
, “
Effect of engine operating conditions and lubricant rheology on the distribution of losses in an internal combustion engine
,”
J. Tribol.
131
,
041101
(
2009
).
2.
K.
Holmberg
,
P.
Andersson
,
N.-O.
Nylund
,
K.
Mäkelä
, and
A.
Erdemir
, “
Global energy consumption due to friction in trucks and buses
,”
Tribol. Int.
78
,
94
114
(
2014
).
3.
R. S.
Dwyer-Joyce
,
T.
Reddyhoff
, and
J.
Zhu
, “
Ultrasonic measurement for film thickness and solid contact in elastohydrodynamic lubrication
,”
J. Tribol.
133
,
031501
(
2011
).
4.
P.
Carden
,
C.
Pisani
,
J.
Andersson
,
I.
Field
,
E.
Lainé
,
J.
Bansal
, and
M.
Devine
, “
The effect of low viscosity oil on the wear, friction and fuel consumption of a heavy duty truck engine
,”
SAE Int. J. Fuels Lubr.
6
,
311
319
(
2013
).
5.
V.
Macián
,
B.
Tormos
,
S.
Ruíz
, and
L.
Ramírez
, “
Potential of low viscosity oils to reduce CO2 emissions and fuel consumption of urban buses fleets
,”
Transp. Res. D
39
,
76
88
(
2015
).
6.
V.
Macián
,
B.
Tormos
,
S.
Ruíz
,
G.
Miró
, and
T.
Pérez
, “
Evaluation of low viscosity engine wear effects and oil performance in heavy duty engines fleet test
,” in
SAE 2014 International Powertrain, Fuels and Lubricants Meeting
(
SAE International
,
2014
), Technical Paper 2014-01-2797.
7.
D. A.
Kofke
and
P. G.
Bolhuis
, “
Freezing of polydisperse hard spheres
,”
Phys. Rev. E
59
,
618
622
(
1999
).
8.
Y.
Su
,
G.
Liu
,
B.
Xie
,
D.
Fu
, and
D.
Wang
, “
Crystallization features of normal alkanes in confined geometry
,”
Acc. Chem. Res.
47
,
192
201
(
2014
).
9.
J.
Klein
and
E.
Kumacheva
, “
Confinement-induced phase transitions in simple liquids
,”
Science
269
,
816
819
(
1995
).
10.
H.
Gao
and
M.
Müser
, “
Why liquids can appear to solidify during squeeze-out—Even when they don’t
,”
J. Colloid Interface Sci.
562
,
273
278
(
2020
).
11.
B. O.
Jacobson
and
P.
Vinet
, “
A model for the influence of pressure on the bulk modulus and the influence of temperature on the solidification pressure for liquid lubricants
,”
J. Tribol.
109
,
709
714
(
1987
).
12.
M. S.
Torikachvili
,
S. K.
Kim
,
E.
Colombier
,
S. L.
Bud’ko
, and
P. C.
Canfield
, “
Solidification and loss of hydrostaticity in liquid media used for pressure measurements
,”
Rev. Sci. Instrum.
86
,
123904
(
2015
).
13.
API Engine Oil Licensing and Certification System, American Petroleum Institute API1509, 18th ed, June 2019, available at: https://www.api.org/products-and-services/engine-oil/documents/api-1509-documents; accessed 30 October 2019.
14.
M.
Tsujimoto
, “
A highly unsaturated hydrocarbon in shark liver oil
,”
J. Ind. Eng. Chem.
8
,
889
896
(
1916
).
15.
S. K.
Kim
and
F.
Karadeniz
, “
Biological importance and applications of squalene and squalane
,”
Adv. Food Nutr. Res.
65
,
223
233
(
2012
).
16.
R.
Rissmann
,
M. H. M.
Oudshoorn
,
E.
Kocks
,
W. E.
Hennink
,
M.
Ponec
, and
J. A.
Bouwstra
, “
Lanolin-derived lipid mixtures mimic closely the lipid composition and organization of vernix caseosa lipids
,”
Biochim. Biophys. Acta Biomembr.
1778
,
2350
2360
(
2008
).
17.
J.
Rumble
,
CRC Handbook of Chemistry and Physics
, 100th ed. (
CRC Press; Taylor & Francis Group
,
Boca Raton, FL
,
2019
).
18.
A.
Porras-Vazquez
,
L.
Martinie
,
P.
Vergne
, and
N.
Fillot
, “
Independence between friction and velocity distribution in fluids subjected to severe shearing and confinement
,”
Phys. Chem. Chem. Phys.
20
,
27280
27293
(
2018
).
19.
M. J. P.
Comuñas
,
X.
Paredes
,
F. M.
Gaciño
,
J.
Fernández
,
J.-P.
Bazile
,
C.
Boned
,
J.-L.
Daridon
,
G.
Galliero
,
J.
Pauly
, and
K. R.
Harris
, “
Viscosity measurements for squalane at high pressures to 350 MPa from t = (293.15 to 363.15) K
,”
J. Chem. Thermodyn.
69
,
201
208
(
2014
).
20.
S. K.
Mylona
,
M. J.
Assael
,
M. J. P.
Comuñas
,
X.
Paredes
,
F. M.
Gaciño
,
J.
Fernández
,
J. P.
Bazile
,
C.
Boned
,
J. L.
Daridon
,
G.
Galliero
,
J.
Pauly
, and
K. R.
Harris
, “
Reference correlations for the density and viscosity of squalane from 273 to 473 K at pressures to 200 MPa
,”
J. Phys. Chem. Ref. Data
43
,
013104
(
2014
).
21.
S.
Bair
, “
The high pressure rheology of some simple model hydrocarbons
,”
Proc. Inst. Mech. Eng., Part J
216
,
139
149
(
2002
).
22.
S.
Bair
, “
Reference liquids for quantitative elastohydrodynamics: Selection and rheological characterization
,”
Tribol. Lett.
22
,
197
206
(
2006
).
23.
S. S.
Bair
,
I.
Andersson
,
F. S.
Qureshi
, and
M. M.
Schirru
, “
New EHL modeling data for the reference liquids squalane and squalane plus polyisoprene
,”
Tribol. Trans.
61
,
247
255
(
2018
).
24.
M.
Mondello
and
G. S.
Grest
, “
Molecular dynamics of linear and branched alkanes
,”
J. Chem. Phys.
103
,
7156
7165
(
1995
).
25.
M.
Mondello
,
G. S.
Grest
,
A. R.
Garcia
, and
B. G.
Silbernagel
, “
Molecular dynamics of linear and branched alkanes: Simulations and nuclear magnetic resonance results
,”
J. Chem. Phys.
105
,
5208
5215
(
1996
).
26.
S.
Bair
,
C.
McCabe
, and
P. T.
Cummings
, “
Comparison of nonequilibrium molecular dynamics with experimental measurements in the nonlinear shear-thinning regime
,”
Phys. Rev. Lett.
88
,
058302
(
2002
).
27.
V.
Jadhao
and
M. O.
Robbins
, “
Probing large viscosities in glass-formers with nonequilibrium simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
7952
7957
(
2017
).
28.
V.
Jadhao
and
M. O.
Robbins
, “
Rheological properties of liquids under conditions of elastohydrodynamic lubrication
,”
Tribol. Lett.
67
,
66
(
2019
).
29.
S. A.
Gupta
,
H. D.
Cochran
, and
P. T.
Cummings
, “
Shear behavior of squalane and tetracosane under extreme confinement. I. Model, simulation method, and interfacial slip
,”
J. Chem. Phys.
107
,
10316
10326
(
1997
).
30.
S. A.
Gupta
,
H. D.
Cochran
, and
P. T.
Cummings
, “
Shear behavior of squalane and tetracosane under extreme confinement. II. Confined film structure
,”
J. Chem. Phys.
107
,
10327
10334
(
1997
).
31.
S. A.
Gupta
,
H. D.
Cochran
, and
P. T.
Cummings
, “
Shear behavior of squalane and tetracosane under extreme confinement. III. Effect of confinement on viscosity
,”
J. Chem. Phys.
107
,
10335
10343
(
1997
).
32.
M.
Doig
,
C. P.
Warrens
, and
P. J.
Camp
, “
Structure and friction of stearic acid and oleic acid films adsorbed on iron-oxide surfaces in squalane
,”
Langmuir
30
,
186
195
(
2014
).
33.
G.
Tsagkaropoulou
,
C. P.
Warrens
, and
P. J.
Camp
, “
Interactions between friction modifiers and dispersants in lubricants: The case of glycerol monooleate and polyisobutylsuccinimide-polyamine
,”
ACS Appl. Mater. Interfaces
11
,
28359
28369
(
2019
).
34.
G. J.
Piermarini
,
S.
Block
,
J. D.
Barnett
, and
R. A.
Forman
, “
Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar
,”
J. Appl. Phys.
46
,
2774
2780
(
1975
).
35.
K.
Syassen
, “
Ruby under pressure
,”
High Pressure Res.
28
,
75
126
(
2008
).
36.
S.
Klotz
,
J.-C.
Chervin
,
P.
Munsch
, and
G.
Le Marchand
, “
Hydrostatic limits of 11 pressure transmitting media
,”
J. Phys. D: Appl. Phys.
42
,
075413
(
2009
).
37.
S. K.
Gupta
, “
Peak decomposition using Pearson type VII function
,”
J. Appl. Cryst.
31
,
474
476
(
1998
).
38.
S.
Nadarajah
and
S.
Kotz
, “
A product Pearson-type VII density distribution
,”
J. Comput. Appl. Math.
211
,
103
113
(
2008
).
39.
H. K.
Mao
,
J.
Xu
, and
P. M.
Bell
, “
Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions
,”
J. Geophys. Res.
91
,
4673
4676
, (
1986
).
40.
O. A.
Nerushev
,
G.
Dowd
, and
C. R.
Pulham
, “
Determination of the freezing pressures and compressibilities of selected lubricants using multi-ruby fluorescence and optical techniques
” (unpublished) (
2020
).
41.
M.
Basham
,
J.
Filik
,
M. T.
Wharmby
,
P. C. Y.
Chang
,
B.
El Kassaby
,
M.
Gerring
,
J.
Aishima
,
K.
Levik
,
B. C. A.
Pulford
,
I.
Sikharulidze
,
D.
Sneddon
,
M.
Webber
,
S. S.
Dhesi
,
F.
Maccherozzi
,
O.
Svensson
,
S.
Brockhauser
,
G.
Náray
, and
A. W.
Ashton
, “
Data analysis workbench (DAWN)
,”
J. Synchrotron Radiat.
22
,
853
858
(
2015
).
42.
See http://lammps.sandia.gov for LAMMPS Molecular Dynamics Simulator,
1995
.
43.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
44.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
45.
W. L.
Jorgensen
,
J. D.
Madura
, and
C. J.
Swenson
, “
Optimized intermolecular potential functions for liquid hydrocarbons
,”
J. Am. Chem. Soc.
106
,
6638
6646
(
1984
).
46.
W. L.
Jorgensen
and
J.
Tirado-Rives
, “
The OPLS potential functions for proteins. energy minimizations for crystals of cyclic peptides and crambin
,”
J. Am. Chem. Soc.
110
,
1657
1666
(
1988
).
47.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
48.
D. J.
Evans
and
G. P.
Morriss
, “
Nonlinear-response theory for steady planar Couette flow
,”
Phys. Rev. A
30
,
1528
1530
(
1984
).
49.
P. J.
Daivis
and
B. D.
Todd
, “
A simple, direct derivation and proof of the validity of the SLLOD equations of motion for generalized homogeneous flows
,”
J. Chem. Phys.
124
,
194103
(
2006
).
50.
D. M.
Heyes
,
D.
Dini
, and
E. R.
Smith
, “
Incremental viscosity by non-equilibrium molecular dynamics and the Eyring model
,”
J. Chem. Phys.
148
,
194506
(
2018
).
51.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
, 2nd ed. (
Oxford University Press
,
Oxford
,
2016
).
52.
S.
Bair
, “
The viscosity at the glass transition of a liquid lubricant
,”
Friction
7
,
86
91
(
2019
).
You do not currently have access to this content.